Skip to main content
The AAPS Journal logoLink to The AAPS Journal
. 2006 Feb 24;8(1):E76–E88. doi: 10.1208/aapsj080109

CNS drug delivery: Opioid peptides and the blood-brain barrier

Ken A Witt 1, Thomas P Davis 2,
PMCID: PMC2751425  PMID: 16584136

Abstract

Peptides are key regulators in cellular and intercellular physiological responses and possess enormous promise for the treatment of pathological conditions. Opioid peptide activity within the central nervous system (CNS) is of particular interest for the treatment of pain owing to the elevated potency of peptides and the centrally mediated actions of pain processes. Despite this potential, peptides have seen limited use as clinically viable drugs for the treatment of pain. Reasons for the limited use are primarily based in the physiochemical and biochemical nature of peptides. Numerous approaches have been devised in an attempt to improve peptide drug delivery to the brain, with variable results. This review describes different approaches to peptide design/modification and provides examples of the value of these strategies to CNS delivery of peptide drugs. The various modes of modification of therapeutic peptides may be amalgamated, creating more efficacious “hybrid” peptides, with synergistic delivery to the CNS. The ongoing development of these strategies provides promise that peptide drugs may be useful for the treatment of pain and other neurologically-based disease states in the future

Keywords: DPDPE, biphalin, transport, delivery strategies

Full Text

The Full Text of this article is available as a PDF (242.1 KB).

References

  • 1.Crone C. The blood-brain barrier-facts and questions. In: Siesjo B, Sorensen S, editors. Ion Homeostasis of the Brain. Copenhagen: Munksgaard; 1971. pp. 52–62. [Google Scholar]
  • 2.Brightman MW, Reese TS. Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol. 1969;40:648–677. doi: 10.1083/jcb.40.3.648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Rubin LL, Staddon JM. The cell biology of the blood-brain barrier. Annu Rev Neurosci. 1999;22:11–28. doi: 10.1146/annurev.neuro.22.1.11. [DOI] [PubMed] [Google Scholar]
  • 4.Kniesel U, Wolburg H. Tight junctions of the blood-brain barrier. Cell Mol Neurobiol. 2000;20:57–76. doi: 10.1023/A:1006995910836. [DOI] [PubMed] [Google Scholar]
  • 5.Tamai I, Tsuji A. Transporter-mediated permeation of drugs across the blood-brain barrier. J Pharm Sci. 2000;89:1371–1388. doi: 10.1002/1520-6017(200011)89:11<1371::AID-JPS1>3.0.CO;2-D. [DOI] [PubMed] [Google Scholar]
  • 6.Habgood MD, Begley DJ, Abbott NJ. Determinants of passive drug entry into the central nervous system. Cell Mol Neurobiol. 2000;20:231–253. doi: 10.1023/A:1007001923498. [DOI] [PubMed] [Google Scholar]
  • 7.Vorbrodt AW. Ultrastructural cytochemistry of blood-brain barrier endothelia. Prog Histochem Cytochem. 1988;18:1–99. doi: 10.1016/S0079-6336(88)80001-9. [DOI] [PubMed] [Google Scholar]
  • 8.Minn A, Ghersi-Egea JF, Perrin R, Leininger B, Siest G. Drug metabolizing enzymes in the brain and cerebral microvessels. Brain Res Brain Res Rev. 1991;16:65–82. doi: 10.1016/0165-0173(91)90020-9. [DOI] [PubMed] [Google Scholar]
  • 9.Brownlees J, Williams CH. Peptidases, peptides, and the mammalian blood-brain barrier. J Neurochem. 1993;60:793–803. doi: 10.1111/j.1471-4159.1993.tb03223.x. [DOI] [PubMed] [Google Scholar]
  • 10.el-Bacha RS, Minn A. Drug metabolizing enzymes in cerebrovascular endothelial cells afford a metabolic protection to the brain. Cell Mol Biol. 1999;45:15–23. [PubMed] [Google Scholar]
  • 11.Pardridge WM. Peptide Drug Delivery to the Brain. New York: Raven Press Ltd; 1991. [Google Scholar]
  • 12.Witt KA, Gillespie TJ, Huber JD, Egleton RD, Davis TP. Peptide drug modifications to enhance bioavailability and blood-brain barrier permeability. Peptides. 2001;22:2329–2343. doi: 10.1016/S0196-9781(01)00537-X. [DOI] [PubMed] [Google Scholar]
  • 13.Banks WA, Kastin AJ. Passage of peptides across the blood-brain barrier: pathophysiological perspectives. Life Sci. 1996;59:1923–1943. doi: 10.1016/S0024-3205(96)00380-3. [DOI] [PubMed] [Google Scholar]
  • 14.Brightman MW, Hori M, Rapoport SI, Reese TS, Westergaard E. Osmotic opening of tight junctions in cerebral endothelium. J Comp Neurol. 1973;152:317–325. doi: 10.1002/cne.901520402. [DOI] [PubMed] [Google Scholar]
  • 15.Nagy Z, Szabo M, Huttner I. Blood-brain barrier im pairment by low pH buffer perfusion via the internal carotid artery in rat. Acta Neuropathol (Berl). 1985;68:160–163. doi: 10.1007/BF00688639. [DOI] [PubMed] [Google Scholar]
  • 16.Basch A, Fazekas IG. Increased permeability of the blood-brain barrier following experimental theraal injury of the skin. A fluorescent and electron microscopic study. Angiologica. 1970;7:357–364. doi: 10.1159/000157851. [DOI] [PubMed] [Google Scholar]
  • 17.Hirano A, Dembitzer HM, Becker NH, Levine S, Zimmerman HM. Fine structural alterations of the blood-brain barrier in experimental allergic encephalomyelitis. J Neuropathol Exp Neurol. 1970;29:432–440. doi: 10.1097/00005072-197007000-00007. [DOI] [PubMed] [Google Scholar]
  • 18.Muller DM, Pender MP, Greer JM. Blood-brain barrier disruption and lesion localisation in experimental autoimmune encephalomyelitis with predominant cerebellar and brainstem involvement. J Neuroimmunol. 2005;160:162–169. doi: 10.1016/j.jneuroim.2004.11.011. [DOI] [PubMed] [Google Scholar]
  • 19.Kirk J, Plumb J, Mirakhur M, McQuaid S. Tight junctional abnormality in multiple sclerosis white matter affects all calibres of vessel and is associated with blood-brain barrier leakage and active demyelination. J Pathol. 2003;201:319–327. doi: 10.1002/path.1434. [DOI] [PubMed] [Google Scholar]
  • 20.Plumb J, McQuaid S, Mirakhur M, Kirk J. Abnormal endothelial tight junctions in active lesions and normal-appearing white matter in multiple sclerosis. Brain Pathol. 2002;12:154–169. doi: 10.1111/j.1750-3639.2002.tb00430.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Yang GY, Gong C, Qin Z, Liu XH, Lorris Betz A. Tumor necrosis factor alpha expression produces increased blood-brain barrier permeability following temporary focal cerebral ischemia in mice. Brain Res Mol Brain Res. 1999;69:135–143. doi: 10.1016/S0169-328X(99)00007-8. [DOI] [PubMed] [Google Scholar]
  • 22.Blamire AM, Anthony DC, Rajagopalan B, Sibson NR, Perry VH, Styles P. Interleukin-1 beta-induced changes in blood-brain barrier permeability, apparent diffusion coefficient, and cerebral blood volume in the rat brain: a magnetic resonance study. J Neurosci. 2000;20:8153–8159. doi: 10.1523/JNEUROSCI.20-21-08153.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Gulati A, Dhawan KN, Shukla R, Srimal RC, Dhawan BN. Evidence for the involvement of histamine in the regulation of blood-brain barrier permeability. Pharmacol Res Commun. 1985;17:395–404. doi: 10.1016/0031-6989(85)90019-0. [DOI] [PubMed] [Google Scholar]
  • 24.Sharma HS, Dey PK. Probable involvement of 5-hydroxytryptamine in increased permeability of blood-brain barrier under heat stress in young rats. Neuropharmacology. 1986;25:161–167. doi: 10.1016/0028-3908(86)90037-7. [DOI] [PubMed] [Google Scholar]
  • 25.Schurer L, Temesvari P, Wahl M, Unterberg A, Baethmann A. Blood-brain barrier permeability and vascular reactivity to bradykinin after pretreatment with dexamethasone. Acta Neuropathol (Berl). 1989;77:576–581. doi: 10.1007/BF00687884. [DOI] [PubMed] [Google Scholar]
  • 26.Guan JX, Sun SG, Cao XB, Chen ZB, Tong ET. Effect of thrombin on blood brain barrier permeability and its mechanism. Chim Med J (Engl). 2004;117:1677–1681. [PubMed] [Google Scholar]
  • 27.Lee HS, Namkoong K, Kim DH, et al. Hydrogen peroxide-induced alterations of tight junction proteins in bovine brain microvascular endothelial cells. Microvasc Res. 2004;68:231–238. doi: 10.1016/j.mvr.2004.07.005. [DOI] [PubMed] [Google Scholar]
  • 28.Lo EH, Pan Y, Matsumoto K, Kowall NW. Blood-brain barrier disruption in experimental focal ischemia: comparison between in vivo MRI and immunocytochemistry. Magn Reson Imaging. 1994;12:403–411. doi: 10.1016/0730-725X(94)92533-X. [DOI] [PubMed] [Google Scholar]
  • 29.Fischer S, Wiesnet M, Marti HH, Renz D, Schaper W. Simultaneous activation of several second messengers in hypoxia-induced hyperpermeability of brain derived endothelial cells. J Cell Physiol. 2004;198:359–369. doi: 10.1002/jcp.10417. [DOI] [PubMed] [Google Scholar]
  • 30.Brown RC, Davis TP. Hypoxia/aglycemia alters expression of occludin and actin in brain endothelial cells. Biochem Biophys Res Commun. 2005;327:1114–1123. doi: 10.1016/j.bbrc.2004.12.123. [DOI] [PubMed] [Google Scholar]
  • 31.Struzynska L, Walski M, Gadamski R, Dabrowska-Bouta B, Rafalowska U. Lead-induced abnormalities in blood-brain barrier permeability in experimental chronic toxicity. Mol Chem Neuropathol. 1997;31:207–224. doi: 10.1007/BF02815125. [DOI] [PubMed] [Google Scholar]
  • 32.Kim YS, Lee MH, Wisniewski HM. Aluminum induced reversible change in permeability of the blood-brain barrier to [14C]sucrose. Brain Res. 1986;377:286–291. doi: 10.1016/0006-8993(86)91206-0. [DOI] [PubMed] [Google Scholar]
  • 33.Yang CS, Chang CH, Tsai PJ, Chen WY, Tseng FG, Lo LW. Nanoparticle-based in vivo investigation on blood-brain barrier permeability following ischemia and reperfusion. Anal Chem. 2004;76:4465–4471. doi: 10.1021/ac035491v. [DOI] [PubMed] [Google Scholar]
  • 34.Dobbin J, Crockard HA, Ross-Russell R. Transient blood-brain barrier permeability following profound temporary global ischaemia: an experimental study using 14C-AIB. J Cereb Blood Flow Metab. 1989;9:71–78. doi: 10.1038/jcbfm.1989.10. [DOI] [PubMed] [Google Scholar]
  • 35.Schirmacher A, Winters S, Fischer S, et al. Electromagnetic fields (1.8 GHz) increase the permeability to sucrose of the blood-brain barrier in vitro. Bioelectromagnetics. 2000;21:338–345. doi: 10.1002/1521-186X(200007)21:5<338::AID-BEM2>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
  • 36.Abbott NJ, Mendonca LL, Dolman DE. The blood-brain barrier in systemic lupus erythematosus. Lupus. 2003;12:908–915. doi: 10.1191/0961203303lu501oa. [DOI] [PubMed] [Google Scholar]
  • 37.Hansson HA, Johansson BB. Induction of pinocytosis in cerebral vessels by acute hypertension and by hyperosmolar solutions. J Neurosci Res. 1980;5:183–190. doi: 10.1002/jnr.490050303. [DOI] [PubMed] [Google Scholar]
  • 38.Nag S, Robertson DM, Dinsdale HB. Quantitative estimate of pinocytosis in experimental acute hypertension. Acta Neuropathol (Berl). 1979;46:107–116. doi: 10.1007/BF00684811. [DOI] [PubMed] [Google Scholar]
  • 39.Neubauer C, Phelan AM, Kues H, Lange DG. Microwave irradiation of rats at 2.45 GHz activates pinocytotic-like uptake of tracer by capillary endothelial cells of cerebral cortex. Bioelectromagnetics. 1990;11:261–268. doi: 10.1002/bem.2250110402. [DOI] [PubMed] [Google Scholar]
  • 40.Petito CK. Early and late mechanisms of increased vascular permeability following experimental cerebral infarction. J Neuropathol Exp Neurol. 1979;38:222–234. doi: 10.1097/00005072-197905000-00003. [DOI] [PubMed] [Google Scholar]
  • 41.Cipolla MJ, Crete R, Vitullo L, Rix RD. Transcellular transport as a mechanism of blood-brain barrier disruption during stroke. Front Biosci. 2004;9:777–785. doi: 10.2741/1282. [DOI] [PubMed] [Google Scholar]
  • 42.Nitsch C, Goping G, Klatzo I. Pathophysiological aspects of blood-brain barrier permeability in epileptic seizures. Adv Exp Med Biol. 1986;203:175–189. doi: 10.1007/978-1-4684-7971-3_13. [DOI] [PubMed] [Google Scholar]
  • 43.Lossinsky AS, Vorbrodt AW, Wisniewski HM. Ultracytochemical studies of vesicular and canalicular transport structures in the injured mammalian blood-brain barrier. Acta Neuropathol (Berl). 1983;61:239–245. doi: 10.1007/BF00691992. [DOI] [PubMed] [Google Scholar]
  • 44.Long DM. Capillary ultrastructure and the blood-brain barrier in human malignant brain tumors. J Neurosurg. 1970;32:127–144. doi: 10.3171/jns.1970.32.2.0127. [DOI] [PubMed] [Google Scholar]
  • 45.Lossinsky AS, Vorbrodt AW, Wisniewski HM. Characterization of endothelial cell transport in the developing mouse blood-brain barrier. Dev Neurosci. 1986;8:61–75. doi: 10.1159/000112242. [DOI] [PubMed] [Google Scholar]
  • 46.Engelhardt B. Development of the blood-brain barrier. Cell Tissue Res. 2003;314:119–129. doi: 10.1007/s00441-003-0751-z. [DOI] [PubMed] [Google Scholar]
  • 47.Horton JC, Hedley-Whyte ET. Protein movement across the blood-brain barrier in hypervolemia. Brain Res. 1979;169:610–614. doi: 10.1016/0006-8993(79)90414-1. [DOI] [PubMed] [Google Scholar]
  • 48.Sharma HS, Dey PK. Impairment of blood-brain barrier (BBB) in rat by immobilization stress: role of serotonin (5-HT) Indian J Physiol Pharmacol. 1981;25:111–122. [PubMed] [Google Scholar]
  • 49.Wells LA. Alteration of the blood-brain barrier system by hypothermia: critical time period vs. critical temperature. Comp Biochem Physiol A. 1973;44:293–296. doi: 10.1016/0300-9629(73)90481-7. [DOI] [PubMed] [Google Scholar]
  • 50.Albert EN, Kerns JM. Reversible microwave effects on the blood-brain barrier. Brain Res. 1981;230:153–164. doi: 10.1016/0006-8993(81)90398-X. [DOI] [PubMed] [Google Scholar]
  • 51.Lanse SB, Lee JC, Jacobs EA, Brody H. Changes in the permeability of the blood-brain barrier under hyperbaric conditions. Aviat Space Environ Med. 1978;49:890–894. [PubMed] [Google Scholar]
  • 52.Sundstrom R, Muntzing K, Kalimo H, Sourander P. Changes in the integrity of the blood-brain barrier in suckling rats with low dose lead encephalopathy. Acta Neuropathol (Berl.) 1985;68:1–9. doi: 10.1007/BF00688948. [DOI] [PubMed] [Google Scholar]
  • 53.Kuwabara T, Yuasa T, Hidaka K, Igarashi H, Kaneko K, Miyatake T. The observation of blood-brain barrier of organic mercury poisoned rat: a Gd-DTPA enhanced magnetic resonance study. No To Shinkei. 1989;41:681–685. [PubMed] [Google Scholar]
  • 54.Sarmento A, Albino-Teixeira A, Azevedo I. Amitriptyline-induced morphological alterations of the rat blood-brain barrier. Eur J Pharmacol. 1990;176:69–74. doi: 10.1016/0014-2999(90)90133-Q. [DOI] [PubMed] [Google Scholar]
  • 55.Quagliarello VJ, Long WJ, Scheld WM. Morphologic alterations of the blood-brain barrier with experimental meningitis in the rat. Temporal sequence and role of encapsulation. J Clin Invest. 1986;77:1084–1095. doi: 10.1172/JCI112407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Tunkel AR, Rosser SW, Hansen EJ, Scheld WM. Blood-brain barrier alterations in bacterial meningitis: development of an in vitro model and observations on the effects of lipopolysaccharide. In Vitro Cell Dev Biol. 1991;27A:113–120. doi: 10.1007/BF02630996. [DOI] [PubMed] [Google Scholar]
  • 57.Pozzilli C, Bernardi S, Mansi L, et al. Quantitative assessment of blood-brain barrier permeability in multiple sclerosis using 68-Ga-EDTA and positron emission tomography. J Neurol Neurosurg Psychiatry. 1988;51:1058–1062. doi: 10.1136/jnnp.51.8.1058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Wuerfel J, Bellmann-Strobl J, Brunecker P, et al. Changes in cerebral perfusion precede plaque formation in multiple sclerosis: a longitudinal perfusion MRI study. Brain. 2004;127:111–119. doi: 10.1093/brain/awh007. [DOI] [PubMed] [Google Scholar]
  • 59.Joo F, Zoltan OT, Csillik B, Foldi M. Increased permeability of the blood-brain barrier in lymphostatic encephalopathy. An electron microscopic study. Angiologica. 1969;6:318–325. [PubMed] [Google Scholar]
  • 60.Pardridge WM, Crawford IL, Connor JD. Permeability changes in the blood-brain barrier induced by nortriptyline and chlorpromazine. Toxicol Appl Pharmacol. 1973;26:49–57. doi: 10.1016/0041-008X(73)90084-7. [DOI] [PubMed] [Google Scholar]
  • 61.Preston E, Foster DO. Evidence for pore-like opening of the blood-brain barrier following forebrain ischemia in rats. Brain Res. 1997;761:4–10. doi: 10.1016/S0006-8993(97)00323-5. [DOI] [PubMed] [Google Scholar]
  • 62.Simpson IA, Appel NM, Hokari M, et al. Blood-brain barrier glucose transporter: effects of hypo- and hyperglycemia revisited. J Neurochem. 1999;72:238–247. doi: 10.1046/j.1471-4159.1999.0720238.x. [DOI] [PubMed] [Google Scholar]
  • 63.Pardridge WM, Triguero D, Farrell CR. Downregulation of blood-brain barrier glucose transporter in experimental diabetes. Diabetes. 1990;39:1040–1044. doi: 10.2337/diab.39.9.1040. [DOI] [PubMed] [Google Scholar]
  • 64.Deane R, Du Yan S, Submamaryan RK, et al. RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain. Nat Med. 2003;9:907–913. doi: 10.1038/nm890. [DOI] [PubMed] [Google Scholar]
  • 65.Deane R, Wu Z, Sagare A, et al. LRP/amyloid beta-peptide interaction mediates differential brain efflux of Abeta isoforms. Neuron. 2004;43:333–344. doi: 10.1016/j.neuron.2004.07.017. [DOI] [PubMed] [Google Scholar]
  • 66.Zlokovic BV. Neurovascular mechanisms of Alzheimer's neurodegeneration. Trends Neurosci. 2005;28:202–208. doi: 10.1016/j.tins.2005.02.001. [DOI] [PubMed] [Google Scholar]
  • 67.Harata N, Iwasaki Y. The blood-brain barrier and selective vulnerability in experimental thiamine-deficiency encephalopathy in the mouse. Metab Brain Dis. 1996;11:55–69. doi: 10.1007/BF02080931. [DOI] [PubMed] [Google Scholar]
  • 68.Gibson GE, Calingasan NY, Baker H, Gandy S, Sheu KF. Importance of vascular changes in selective neurodegeneration with thiamine deficiency. Ann N Y Acad Sci. 1997;826:516–519. doi: 10.1111/j.1749-6632.1997.tb48517.x. [DOI] [PubMed] [Google Scholar]
  • 69.Banks WA. Leptin transport across the blood-brain barrier: implications for the cause and treatment of obesity. Curr Pharm Des. 2001;7:125–133. doi: 10.2174/1381612013398310. [DOI] [PubMed] [Google Scholar]
  • 70.Kastin AJ, Akerstrom V. Glucose and insulin increase the transport of leptin through the blood-brain barrier in normal mice but not in streptozotocin-diabetic mice. Neuroendocrinology. 2001;73:237–242. doi: 10.1159/000054640. [DOI] [PubMed] [Google Scholar]
  • 71.Pan W, Akerstrom V, Zhang J, Pejovic V, Kastin AJ. Modulation of feeding-related peptide/protein signals by the blood-brain barrier. J Neurochem. 2004;90:455–461. doi: 10.1111/j.1471-4159.2004.02502.x. [DOI] [PubMed] [Google Scholar]
  • 72.Kang YS, Terasaki T, Tsuji A. Dysfunction of choline transport system through blood-brain barrier in stroke-prone spontaneously hypertensive rats. J Pharmacobiodyn. 1990;13:10–19. doi: 10.1248/bpb1978.13.10. [DOI] [PubMed] [Google Scholar]
  • 73.Kroll RA, Neuwelt EA. Outwitting the blood-brain barrier for therapeutic purposes: osmotic opening and other means. Neurosurgery. 1998;42:1083–1099. doi: 10.1097/00006123-199805000-00082. [DOI] [PubMed] [Google Scholar]
  • 74.Rapoport SI. Osmotic opening of the blood-brain barrier: principles. mechanism, and therapeutic applications. Cell Mol Neurobiol. 2000;20:217–230. doi: 10.1023/A:1007049806660. [DOI] [PubMed] [Google Scholar]
  • 75.Alexander B, Li X, Benjamin IS, Segal MB, Sherwood R, Preston JE. A quantitative evaluation of the permeability of the blood brain barrier of portacaval shunted rats. Metab Brain Dis. 2000;15:93–103. doi: 10.1007/BF02679976. [DOI] [PubMed] [Google Scholar]
  • 76.Emerich DF, Tracy MA, Ward KL, et al. Biocompatibility of poly (DL-lactide-co-glycolide) microspheres implanted into the brain. Cell Transplant. 1999;8:47–58. doi: 10.1177/096368979900800114. [DOI] [PubMed] [Google Scholar]
  • 77.Benoit JP, Faisant N, Venier-Julienne MC, Menei P. Development of microspheres for neurological disorders: from basics to clinical applications. J Control Release. 2000;65:285–296. doi: 10.1016/S0168-3659(99)00250-3. [DOI] [PubMed] [Google Scholar]
  • 78.Chikhale EG, Ng KY, Burton PS, Borchardt RT. Hydrogen bonding potential as a determinant of the in vitro and in situ blood-brain barrier permeability of peptides. Pharm Res. 1994;11:412–419. doi: 10.1023/A:1018969222130. [DOI] [PubMed] [Google Scholar]
  • 79.Hansen DW, Stapelfeld A, Savage MA, et al. Systemic analgesic activity and delta-opioid selectivity in [2,6- dimethyl-Tyr1, D-Pen2,D-Pen5] enkephalin. J Med Chem. 1992;35:684–687. doi: 10.1021/jm00082a008. [DOI] [PubMed] [Google Scholar]
  • 80.Witt KA, Slate CA, Egleton RD, et al. Assessment of stereoselectivity of trimethylphenylalanine analogues of delta-opioid [D-Pen(2),D-Pen(5)]-enkephalin. J Neurochem. 2000;75:424–435. doi: 10.1046/j.1471-4159.2000.0750424.x. [DOI] [PubMed] [Google Scholar]
  • 81.Weber SJ, Greene DL, Sharma SD, et al. Distribution and analgesia of [3H][D-Pen2,D-Pen5]enkephalin and two halogenated analogs after intravenous administration. J Pharmacol Exp Ther. 1991;259:1109–1117. [PubMed] [Google Scholar]
  • 82.Weber SJ, Abbruscato TJ, Brownson EA, et al. Assessment of an in vitro blood-brain barrier model using several [Met5]enkephalin opioid analogs. J Pharmacol Exp Ther. 1993;266:1649–1655. [PubMed] [Google Scholar]
  • 83.Gentry CL, Egleton RD, Gillespie T, et al. The effect of halogenation on blood-brain barrier permeability of a novel peptide drug. Peptides. 1999;20:1229–1238. doi: 10.1016/S0196-9781(99)00127-8. [DOI] [PubMed] [Google Scholar]
  • 84.Abbruscato TJ, Williams SA, Misicka A, Lipkowski AW, Hruby VJ, Davis TP. Blood-to-central nervous system entry and stability of biphalin, a unique double-enkephalin analog, and its halogenated derivatives. J Pharmacol Exp Ther. 1996;276:1049–1057. [PubMed] [Google Scholar]
  • 85.Bradbury AF, Smyth DG. Modification of the N- and C-termini of bioactive peptides: amidation and acetylaion. In: Fricker LD, editor. Peptide Biosysthesis and Processing. Boca Raton: CRC Press; 1991. pp. 231–242. [Google Scholar]
  • 86.Bak A, Gudmundsson OS, Friis GJ, Siahaan TJ, Borchardt RT. Acyloxyalkoxy-based cyclic prodrugs of opioid peptides: evaluation of the chemical and enzymatic stability as well as their transport properties across Caco-2 cell monolayers. Pharm Res. 1999;16:24–29. doi: 10.1023/A:1018854308829. [DOI] [PubMed] [Google Scholar]
  • 87.Uchiyama T, Kotani A, Tatsuni H, et al. Development of novel lipophilic derivatives of DADLE (leucine enkephalin analogue): intestinal permeability characteristics of DADLE derivatives in rats. Pharm Res. 2000;17:1461–1467. doi: 10.1023/A:1007644706286. [DOI] [PubMed] [Google Scholar]
  • 88.Bundgaard H, Moss J. Prodrugs of peptides. 6. Bioreversible derivatives of thyrotropin-releasing hormone (TRH) with increased lipophilicity and resistance to cleavage by the TRH-specific serum enzyme. Pharm Res. 1990;7:885–892. doi: 10.1023/A:1015933504191. [DOI] [PubMed] [Google Scholar]
  • 89.Yamamoto A. Improvement of intestinal absorption of peptide and protein drugs by chemical modification with fatty acids. Nippon Rinsho. 1998;56:601–607. [PubMed] [Google Scholar]
  • 90.Asada H, Douen T, Waki M, et al. Absorption characteristics of chemically modified-insulin derivatives with various fatty acids in the small and large intestine. J Pharm Sci. 1995;84:682–687. doi: 10.1002/jps.2600840604. [DOI] [PubMed] [Google Scholar]
  • 91.Audus KL, Chikhale PJ, Miller DW, Thompson SE, Borchardt RT. Brain uptake of drugs: The influence of chemical and biological factors. Advance in Drug Research. 1992;23:3–64. [Google Scholar]
  • 92.Veber DF, Freidinger RM. The design of metabolically-stable peptide analogs. Trends Neurosci. 1985;8:392–396. doi: 10.1016/0166-2236(85)90140-7. [DOI] [Google Scholar]
  • 93.Bewley TA, Li CH. Evidence for tertiary structure in aqueous solutions of human beta- endorphin as shown by difference absorption spectroscopy. Biochemistry. 1983;22:2671–2675. doi: 10.1021/bi00280a013. [DOI] [PubMed] [Google Scholar]
  • 94.Chaturvedi K, Shahrestanifar M, Howells RD. mu Opioid receptor: role for the amino terminus as a determinant of ligand binding affinity. Brain Res Mol Brain Res. 2000;76:64–72. doi: 10.1016/S0169-328X(99)00332-0. [DOI] [PubMed] [Google Scholar]
  • 95.Roemer D, Pless J. Structure activity relationship of orally active enkephalin analogues as analgesics. Life Sci. 1979;24:621–624. doi: 10.1016/0024-3205(79)90159-0. [DOI] [PubMed] [Google Scholar]
  • 96.Uchiyama T, Kotani A, Kishida T, et al. Effects of various protease inhibitors on the stability and permeability of [D-Ala2,D-Leu5] enkephalin in the rat intestine: comparison with leucine enkephalin. J Pharm Sci. 1998;87:448–452. doi: 10.1021/js970357+. [DOI] [PubMed] [Google Scholar]
  • 97.Knipp GT, Vander Velde DG, Siahaan TJ, Borchardt RT. The effect of beta-turn structure on the passive diffusion of peptides across Caco-2 cell monolayers. Pharm Res. 1997;14:1332–1340. doi: 10.1023/A:1012152117703. [DOI] [PubMed] [Google Scholar]
  • 98.Wang B, Nimkar K, Wang W, et al. Synthesis and evaluation of the physicochemical properties of esterase-sensitive cyclic prodrugs of opioid peptides using coumarinic acid and phenylpropionic acid linkers. J Pept Res. 1999;53:370–382. doi: 10.1034/j.1399-3011.1999.00071.x. [DOI] [PubMed] [Google Scholar]
  • 99.Borchardt RT. Optimizing oral absorption of peptides using prodrug strategies. J Control Release. 1999;62:231–238. doi: 10.1016/S0168-3659(99)00042-5. [DOI] [PubMed] [Google Scholar]
  • 100.Gudmundsson OS, Jois SD, Vander Velde DG, Siahaan TJ, Wang B, Borchardt RT. The effect of conformation on the membrane permeation of coumarinic acid- and phenylpropionic acid-based cyclic prodrugs of opioid peptides. J Pept Res. 1999;53:383–392. doi: 10.1034/j.1399-3011.1999.00076.x. [DOI] [PubMed] [Google Scholar]
  • 101.Weber SJ, Greene DL, Hruby VJ, Yamamura HI, Porreca F, Davis TP. Whole body and brain distribution of [3H]cyclic [D-Pen2,D-Pen5] enkephalin after intraperitoneal, intravenous, oral and subcutaneous administration. J Pharmacol Exp Ther. 1992;263:1308–1316. [PubMed] [Google Scholar]
  • 102.Mosberg HI, Hurst R, Hruby VJ, et al. Cyclic penicillamine containing enkephalin analogs display profound delta receptor selectivities. Life Sci. 1983;33:447–450. doi: 10.1016/0024-3205(83)90538-6. [DOI] [PubMed] [Google Scholar]
  • 103.Knapp RJ, Sharma SD, Toth G, et al. [D-Pen2,4′-125I-Phe4,D-Pen5] enkephalin: a selective high affinity radioligand for delta opioid receptors with exceptional specific activity. J Pharmacol Exp Ther. 1991;258:1077–1083. [PubMed] [Google Scholar]
  • 104.Thomas SA, Abbruscato TJ, Hruby VJ, Davis TP. The entry of [D-penicillamine2,5]enkephalin into the central nervous system: saturation kinetics and specificity. J Pharmacol Exp Ther. 1997;280:1235–1240. [PubMed] [Google Scholar]
  • 105.Egleton RD, Davis TP. Transport of the delta-opioid receptor agonist [D-penicillamine2,5] enkephalin across the blood-brain barrier involves transcytosis1. J Pharm Sci. 1999;88:392–397. doi: 10.1021/js980410+. [DOI] [PubMed] [Google Scholar]
  • 106.Liao S, Alfaro-Lopez J, Shenderovich MD, et al. De novo design, synthesis, and biological activities of high-affinity and selective nonpeptide agonists of the delta-opioid receptor. J Med Chem. 1998;41:4767–4776. doi: 10.1021/jm980374r. [DOI] [PubMed] [Google Scholar]
  • 107.Brownson EA, Abbruscato TJ, Gillespie TJ, Hruby VJ, Davis TP. Effect of peptidases at the blood brain barrier on the permeability of enkephalin. J Pharmacol Exp Ther. 1994;270:675–680. [PubMed] [Google Scholar]
  • 108.Lipkowski AW, Konecka AM, Sadowski B. Double enkephalins. Pol J Pharmacol Pharm. 1982;34:69–71. doi: 10.1111/j.2042-7158.1982.tb04188.x. [DOI] [PubMed] [Google Scholar]
  • 109.Lipkowski AW, Konecka AM, Sroczynska I. Double-enkephalins-synthesis, activity on guinea-pig ileum, and analgesic effect. Peptides. 1982;3:697–700. doi: 10.1016/0196-9781(82)90173-5. [DOI] [PubMed] [Google Scholar]
  • 110.Romanowski M, Zhu X, Ramaswami V, et al. Interaction of a highly potent dimeric enkephalin analog, biphalin, with model membranes. Biochim Biophys Acta. 1997;1329:245–258. doi: 10.1016/S0005-2736(97)00115-6. [DOI] [PubMed] [Google Scholar]
  • 111.Horan PJ, Mattia A, Bilsky EJ, et al. Antinociceptive profile of biphalin, a dimeric enkephalin analog. J Pharmacol Exp Ther. 1993;265:1446–1454. [PubMed] [Google Scholar]
  • 112.Lis H, Sharon N. Protein glycosylation. Structural and functional aspects. Eur J Biochem. 1993;218:1–27. doi: 10.1111/j.1432-1033.1993.tb18347.x. [DOI] [PubMed] [Google Scholar]
  • 113.Poduslo JF, Curran GL. Glycation increases the permeability of proteins across the blood-nerve and blood-brain barriers. Brain Res Mol Brain Res. 1994;23:157–162. doi: 10.1016/0169-328X(94)90222-4. [DOI] [PubMed] [Google Scholar]
  • 114.Jakas A, Horvat S. The effect of glycation on the chemical and enzymatic stability of the endogenous opioid peptide, leucine-enkephalin, and related fragments. Bioorg Chem. 2004;32:516–526. doi: 10.1016/j.bioorg.2004.05.011. [DOI] [PubMed] [Google Scholar]
  • 115.Egleton RD, Mitchell SA, Huber JD, et al. Improved bioavailability to the brain of glycosylated Met-enkephalin analogs. Brain Res. 2000;881:37–46. doi: 10.1016/S0006-8993(00)02794-3. [DOI] [PubMed] [Google Scholar]
  • 116.Powell MF, Stewart T, Otvos L, et al. Peptide stability in drug development. II. Effect of single amino acid substitution and glycosylationon peptide reactivity in human serum. Pharm Res. 1993;10:1268–1273. doi: 10.1023/A:1018953309913. [DOI] [PubMed] [Google Scholar]
  • 117.Fisher JF, Harrison AW, Bundy GL, Wilkinson KF, Rush BD, Ruwart MJ. Peptide to glycopeptide: glycosylated oligopeptide renin inhibitors with attenuated in vivo clearance properties. J Med Chem. 1991;34:3140–3143. doi: 10.1021/jm00114a026. [DOI] [PubMed] [Google Scholar]
  • 118.Tomatis R, Marastoni M, Balboni G, et al. Synthesis and pharmacological activity of deltorphin and dermorphin-related glycopeptides. J Med Chem. 1997;40:2948–2952. doi: 10.1021/jm970119r. [DOI] [PubMed] [Google Scholar]
  • 119.Negri L, Lattanzi R, Tabacco F, et al. Dermorphin and deltorphin glycosylated analogues: synthesis and antinociceptive activity after systemic administration. J Med Chem. 1999;42:400–404. doi: 10.1021/jm9810699. [DOI] [PubMed] [Google Scholar]
  • 120.Polt R, Porreca F, Szabo LZ, et al. Glycopeptide enkephalin analogues produce analgesia in mice: evidence for penetration of the blood-brain barrier. Proc Natl Acad Sci USA. 1994;91:7114–7118. doi: 10.1073/pnas.91.15.7114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 121.Bilsky EJ, Egleton RD, Mitchell SA, et al. Enkephalin glycopeptide analogues produce analgesia with reduced dependence liability. J Med Chem. 2000;43:2586–2590. doi: 10.1021/jm000077y. [DOI] [PubMed] [Google Scholar]
  • 122.Banks WA, Kastin AJ, Akerstrom V. HIV-1 protein gp 120 crosses the blood-brain barrier: role of adsorptive endocytosis. Life Sci. 1997;61:PL119–PL125. doi: 10.1016/S0024-3205(97)00597-3. [DOI] [PubMed] [Google Scholar]
  • 123.Broadwell RD, Balin BJ, Salcman M. Transcytotic pathway for blood-borne protein through the blood-brain barrier. Proc Natl Acad Sci. USA. 1988;85:632–636. doi: 10.1073/pnas.85.2.632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 124.Mackic JB, Stins M, McComb JG, et al. Human blood-brain barrier receptors for Alzheimer's amyloid-beta 1–40. Asymmetrical binding, endocytosis, and transcytosis at the apical side of brain microvascular endothelial cell monolayer. J Clin Invest. 1998;102:734–743. doi: 10.1172/JCI2029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 125.Fillebeen C, Descamps L, Dehouck MP, et al. Receptor-mediated transcytosis of lactoferrin through the blood-brain barrier. J Biol Chem. 1999;274:7011–7017. doi: 10.1074/jbc.274.11.7011. [DOI] [PubMed] [Google Scholar]
  • 126.Palian MM, Boguslavsky VI, O'Brien DF, Polt R. Glycopeptide-membrane interactions: glycosyl enkephalin analogues adopt turn conformations by NMR and CD in amphipathic media. J Am Chem Soc. 2003;125:5823–5831. doi: 10.1021/ja0268635. [DOI] [PubMed] [Google Scholar]
  • 127.Egleton RD, Bilsky EJ, Tollin G, et al. Biousian glycopeptides penetrate the blood-brain barrier. Tetrahedron Asymmetry. 2005;16:65–75. doi: 10.1016/j.tetasy.2004.11.038. [DOI] [Google Scholar]
  • 128.Elmagbari NO, Egleton RD, Palian MM, et al. Antinociceptive structure-activity studies with enkephalin-based opioid glycopeptides. J Pharmacol Exp Ther. 2004;311:290–297. doi: 10.1124/jpet.104.069393. [DOI] [PubMed] [Google Scholar]
  • 129.Sargent DF, Schwyzer R. Membrane lipid phase as catalyst for peptide-receptor interactions. Proc Natl Acad Sci USA. 1986;83:5774–5778. doi: 10.1073/pnas.83.16.5774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 130.Begley DJ. The blood-brain barrier: principles for targeting peptides and drugs to the central nervous system. J Pharm Pharmacol. 1996;48:136–146. doi: 10.1111/j.2042-7158.1996.tb07112.x. [DOI] [PubMed] [Google Scholar]
  • 131.Tsuji A, Tamai II. Carrier-mediated or specialized transport of drugs across the blood-brain barrier. Adv Drug Deliv Rev. 1999;36:277–290. doi: 10.1016/S0169-409X(98)00084-2. [DOI] [PubMed] [Google Scholar]
  • 132.Wade LA, Katzman R. Synthetic amino acids and the nature of L-DOPA transport at the blood-brain barrier. J Neurochem. 1975;25:837–842. doi: 10.1111/j.1471-4159.1975.tb04415.x. [DOI] [PubMed] [Google Scholar]
  • 133.Silbert BS, Lipkowski AW, Cepeda MS, Szyfelbein SK, Osgood PF, Carr DB. Analgesic activity of a novel bivalent opioid peptide compared to morphine via different routes of administration. Agents Actions. 1991;33:382–387. doi: 10.1007/BF01986590. [DOI] [PubMed] [Google Scholar]
  • 134.Abbruscato TJ, Thomas SA, Hruby VJ, Davis TP. Brain and spinal cord distribution of biphalin: correlation with opioid receptor density and mechanism of CNS entry. J Neurochem. 1997;69:1236–1245. doi: 10.1046/j.1471-4159.1997.69031236.x. [DOI] [PubMed] [Google Scholar]
  • 135.Ghosh MK, Mitra AK. Enhanced delivery of 5-iodo-2′-deoxyuridine to the brain parenchyma. Pharm Res. 1992;9:1173–1176. doi: 10.1023/A:1015803922401. [DOI] [PubMed] [Google Scholar]
  • 136.Lambert DM, Geurts M, Scriba GK, Poupaert JH, Dumont P. Simple derivatives of amino acid neurotransmitters. Anticonvulsant evaluation of derived amides, carbamates and esters of glycine and beta-alanine. J Pharm. Belg. 1995;50:194–203. [PubMed] [Google Scholar]
  • 137.Greig NH, Stahle PL, Shetty HU, et al. High-performance liquid chromatographic analysis of chlorambucil tert.-butyl ester and its active metabolites chlorambucil and phenylacetic mustard in plasma and tissue. J Chromatogr. 1990;534:279–286. doi: 10.1016/S0378-4347(00)82175-1. [DOI] [PubMed] [Google Scholar]
  • 138.Greene DL, Hau VS, Abbruscato TJ, et al. Enkephalin analog prodrugs: assessment of in vitro conversion, enzyme cleavage characterization and blood-brain barrier permeability. J Pharmacol Exp Ther. 1996;277:1366–1375. [PubMed] [Google Scholar]
  • 139.Bodor N, Shek E, Higuchi T. Delivery of a quaternary pyridinium salt across the blood-brain barrier by its dihydropyridine derivative. Science. 1975;190:155–156. doi: 10.1126/science.1166305. [DOI] [PubMed] [Google Scholar]
  • 140.Prokai L, Prokai-Tatrai K, Bodor N. Targeting drugs to the brain by redox chemical delivery systems. Med Res Rev. 2000;20:367–416. doi: 10.1002/1098-1128(200009)20:5<367::AID-MED3>3.0.CO;2-P. [DOI] [PubMed] [Google Scholar]
  • 141.Bodor N, Buchwald P. Recent advances in the brain targeting of neuropharmaceuticals by chemical delivery systems. Adv Drug Deliv Rev. 1999;36:229–254. doi: 10.1016/S0169-409X(98)00090-8. [DOI] [PubMed] [Google Scholar]
  • 142.Brewster ME, Estes KS, Bodor N. Improved delivery through biological membranes. 32. Synthesis and biological activity of brain-targeted delivery systems for various estradiol derivatives. J Med Chem. 1988;31:244–249. doi: 10.1021/jm00396a038. [DOI] [PubMed] [Google Scholar]
  • 143.Prokai-Tatrai K, Prokai L, Bodor N. Brain-targeted delivery of a leucine-enkephalin analogue by retrometabolic design. J Med Chem. 1996;39:4775–4782. doi: 10.1021/jm960356e. [DOI] [PubMed] [Google Scholar]
  • 144.Zlokovic BV. Cerebrovascular permeability to peptides: manipulations of transport systems at the blood-brain barrier. Pharm Res. 1995;12:1395–1406. doi: 10.1023/A:1016254514167. [DOI] [PubMed] [Google Scholar]
  • 145.Pardridge WM, Boado RJ, Kang YS. Vector-mediated delivery of a polyamide (“peptide”) nucleic acid analogue through the blood-brain barrier in vivo. Proc Natl Acad Sci USA. 1995;92:5592–5596. doi: 10.1073/pnas.92.12.5592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 146.Pardridge WM. Vector-mediated drug delivery to the brain. Adv Drug Deliv Rev. 1999;36:299–321. doi: 10.1016/S0169-409X(98)00087-8. [DOI] [PubMed] [Google Scholar]
  • 147.Bickel U, Yoshikawa T, Pardridge WM. Delivery of peptides and proteins through the blood-brain barrier. Adv Drug Deliv Rev. 2001;46:247–279. doi: 10.1016/S0169-409X(00)00139-3. [DOI] [PubMed] [Google Scholar]
  • 148.Bickel U, Kang YS, Pardridge WM. In vivo cleavability of a disulfide-based chimeric opioid peptide in rat brain. Bioconjug Chem. 1995;6:211–218. doi: 10.1021/bc00032a009. [DOI] [PubMed] [Google Scholar]
  • 149.Pardridge WM, Triguero D, Buciak JL. Beta-endorphin chimeric peptides: transport through the blood-brain barrier in vivo and cleavage of disulfide linkage by brain. Endocrinology. 1990;126:977–984. doi: 10.1210/endo-126-2-977. [DOI] [PubMed] [Google Scholar]
  • 150.Vehaskari VM, Chang CT, Stevens JK, Robson AM. The effects of polycations on vascular permeability in the rat. A proposed role for charge sites. J Clin Invest. 1984;73:1053–1061. doi: 10.1172/JCI111290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 151.Hardebo JE, Kahrstrom J. Endothelial negative surface charge areas and blood-brain barrier function. Acta Physiol Scand. 1985;125:495–499. doi: 10.1111/j.1748-1716.1985.tb07746.x. [DOI] [PubMed] [Google Scholar]
  • 152.Deguchi Y, Miyakawa Y, Sakurada S, et al. Blood-brain barrier transport of a novel micro 1-specific opioid peptide, H-Tyr-D-Arg-Phebeta-Ala-OH (TAPA) J Neurochem. 2003;84:1154–1161. doi: 10.1046/j.1471-4159.2003.01582.x. [DOI] [PubMed] [Google Scholar]
  • 153.Deguchi Y, Naito Y, Ohtsuki S, et al. Blood-brain barrier permeability of novel [D-arg2]dermorphin (1–4) analogs: transport property is related to the slow onset of antinociceptive activity in the central nervous system. J Pharmacol Exp Ther. 2004;310:177–184. doi: 10.1124/jpet.103.064006. [DOI] [PubMed] [Google Scholar]
  • 154.Chakrabarti S, Sima AA. The presence of anionic sites in basement membranes of cerebral capillaries. Microvasc Res. 1990;39:123–127. doi: 10.1016/0026-2862(90)90064-X. [DOI] [PubMed] [Google Scholar]
  • 155.Terasaki T, Hirai K, Sato H, Kang YS, Tsuji A. Absorptive-mediated endocytosis of a dynorphin-like analgesic peptide, E-2078 into the blood-brain barrier. J Pharmacol Exp Ther. 1989;251:351–357. [PubMed] [Google Scholar]
  • 156.Terasaki T, Takakuwa S, Saheki A, et al. Absorptive-mediated endocytosis of an adrenocorticotropic hormone (ACTH) analogue, ebiratide, into the blood-brain barrier: studies with monolayers of primary cultured bovine brain capillary endothelial cells. Pharm Res. 1992;9:529–534. doi: 10.1023/A:1015848531603. [DOI] [PubMed] [Google Scholar]
  • 157.Shimura T, Tabata S, Terasaki T, Deguchi Y, Tsuji A. In-vivo blood-brain barrier transport of a novel adrenocorticotropic hormone analogue, ebiratide, demonstrated by brain microdialysis and capillary depletion methods. J Pharm Pharmacol. 1992;44:583–588. doi: 10.1111/j.2042-7158.1992.tb05469.x. [DOI] [PubMed] [Google Scholar]
  • 158.Yu J, Butelman ER, Woods JH, Chait BT, Kreek MJ. Dynorphin A (1–8) analog, E-2078, crosses the blood-brain barrier in rhesus monkeys. J Pharmacol Exp Ther. 1997;282:633–638. [PubMed] [Google Scholar]
  • 159.Ukai M, Kobayashi T, Mori K, Shinkai N, Sasaki Y, Kameyama T. Attenuation of memory with Tyr-D-Arg-Phe-beta-Ala-NH2, a novel dermorphin analog with high affinity for mu-opioid receptors. Eur J Pharmacol. 1995;287:245–249. doi: 10.1016/0014-2999(95)00492-0. [DOI] [PubMed] [Google Scholar]
  • 160.Paakkari P, Paakkari I, Vonhof S, Feuerstein G, Siren AL. Dermorphin analog Tyr-D-Arg2-Phe-sarcosine-induced opioid analgesia and respiratory stimulation: the role of mu 1-receptors? J Pharmacol Exp Ther. 1993;266:544–550. [PubMed] [Google Scholar]
  • 161.Kumagai AK, Eisenberg JB, Pardridge WM. Absorptive-mediated endocytosis of cationized albumin and a beta-endorphin-cationized albumin chimeric peptide by isolated brain capillaries Model system of blood-brain barrier transport. J Biol Chem. 1987;262:15214–15219. [PubMed] [Google Scholar]
  • 162.Boado RJ, Pardridge WM. Complete inactivation of target mRNA by biotinylated antisense oligodeoxynucleotide-avidin conjugates. Bioconjug Chem. 1994;5:406–410. doi: 10.1021/bc00029a005. [DOI] [PubMed] [Google Scholar]
  • 163.Adler SG, Wang H, Ward HJ, Cohen AH, Border WA. Electrical charge. Its role in the pathogenesis and prevention of experimental membranous nephropathy in the rabbit. J Clin Invest. 1983;71:487–499. doi: 10.1172/JCI110793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 164.Huang JT, Mannik M, Gleisner J. In situ formation of immune complexes in the choroid plexus of rats by sequential injection of a cationized antigen and unaltered antibodies. J Neuropathol Exp Neurol. 1984;43:489–499. doi: 10.1097/00005072-198409000-00004. [DOI] [PubMed] [Google Scholar]
  • 165.Nagy Z, Peters H, Huttner I. Charge-related alterations of the cerebral endothelium. Lab Invest. 1983;49:662–671. [PubMed] [Google Scholar]
  • 166.Bergmann P, Kacenelenbogen R, Vizet A. Plasma clearance, tissue distribution and catabolism of cationized albumins with increasing isoelectric points in the rat. Clin Sci. (Lond). 1984;67:35–43. doi: 10.1042/cs0670035. [DOI] [PubMed] [Google Scholar]
  • 167.Pardridge WM, Triguero D, Buciak J. Transport of histone through the blood-brain barrier. J Pharmacol Exp Ther. 1989;251:821–826. [PubMed] [Google Scholar]
  • 168.Mumtaz S, Bachhawat BK. Conjugation of proteins and enzymes with hydrophilic polymers and their applications. Indian J Biochem Biophys. 1991;28:346–351. [PubMed] [Google Scholar]
  • 169.Francis GE, Fisher D, Delgado C, Malik F, Gardiner A, Neale D. PEGylation of cytokines and other therapeutic proteins and peptides: the importance of biological optimisation of coupling techniques. Int J Hematol. 1998;68:1–18. doi: 10.1016/S0925-5710(98)00039-5. [DOI] [PubMed] [Google Scholar]
  • 170.So T, Ito HO, Hirata M, Ueda T, Imoto T. Extended blood half-life of monomethoxypolyethylene glycol-conjugated hen lysozyme is a key parameter controlling immunological tolerogenicity. Cell Mol Life Sci. 1999;55:1187–1194. doi: 10.1007/s000180050365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 171.Reddy KR. Controlled-release, pegylation, liposomal formulations: new mechanisms in the delivery of injectable drugs. Ann Pharmacother. 2000;34:915–923. doi: 10.1345/aph.10054. [DOI] [PubMed] [Google Scholar]
  • 172.Tsutsumi Y, Onda M, Nagata S, Lee B, Kreitman RJ, Pastan I. Site-specific chemical modification with polyethylene glycol of recombinant immunotoxin anti-Tac(Fv)-PE38 (LMB-2) improves antitumor activity and reduces animal toxicity and immunogenicity. Proc Natl Acad Sci USA. 2000;97:8548–8553. doi: 10.1073/pnas.140210597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 173.Duncan R. Drug-polymer conjugates: potential for improved chemotherapy. Anticancer Drugs. 1992;3:175–210. doi: 10.1097/00001813-199206000-00001. [DOI] [PubMed] [Google Scholar]
  • 174.Mu Y, Kamada H, Kaneda Y, et al. Bioconjugation of laminin peptide YIGSR with poly(styrene co-maleic acid) increases its antimetastatic effect on lung metastasis of B16-BL6 melanoma cells. Biochem Biophys Res Commun. 1999;255:75–79. doi: 10.1006/bbrc.1999.9930. [DOI] [PubMed] [Google Scholar]
  • 175.Veronese FM. Peptide and protein PEGylation: a review of problems and solutions. Biomaterials. 2001;22:405–417. doi: 10.1016/S0142-9612(00)00193-9. [DOI] [PubMed] [Google Scholar]
  • 176.Witt KA, Huber JD, Egleton RD, et al. Pharmacodynamic and pharmacokinetic characterization of poly(ethylene glycol) conjugation to met-enkephalin analog [D-Pen2, D-Pen5]-enkephalin (DPDPE) J Pharmacol Exp Ther. 2001;298:848–856. [PubMed] [Google Scholar]
  • 177.Chen C, Pollack GM. Altered disposition and antinociception of [D-penicillamine(2,5)] enkephalin in mdr1a-gene-deficient mice. J Pharmacol Exp Ther. 1998;287:545–552. [PubMed] [Google Scholar]
  • 178.Kreuter J, Alyautdin RN, Kharkevich DA, Ivanov AA. Passage of peptides through the blood-brain barrier with colloidal polymer particles (nanoparticles) Brain Res. 1995;674:171–174. doi: 10.1016/0006-8993(95)00023-J. [DOI] [PubMed] [Google Scholar]
  • 179.Kreuter J. Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev. 2001;47:65–81. doi: 10.1016/S0169-409X(00)00122-8. [DOI] [PubMed] [Google Scholar]
  • 180.Woodcock DM, Linsenmeyer ME, Chojnowski G, et al. Reversal of multidrug resistance by surfactants. Br J Cancer. 1992;66:62–68. doi: 10.1038/bjc.1992.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 181.Reddy KR. Controlled-release, pegylation, liposomal formulations: new mechanisms in the delivery of injectable drugs. Ann Pharmacother. 2000;34:915–923. doi: 10.1345/aph.10054. [DOI] [PubMed] [Google Scholar]
  • 182.Batrakova EV, Miller DW, Li S, Alakhov VY, Kabanov AV, Elmquist WF. Pluronic P85 enhances the delivery of digoxin to the brain: in vitro and in vivo studies. J Pharmacol Exp Ther. 2001;296:551–557. [PubMed] [Google Scholar]
  • 183.Witt KA, Huber JD, Egleton RD, Davis TP. Pluronic p85 block-copolymer enhances opioid peptide analgesia. J Pharmacol Exp Ther. 2002;303:760–767. doi: 10.1124/jpet.102.039545. [DOI] [PubMed] [Google Scholar]
  • 184.Batrakova EV, Li S, Li Y, Alakhov VY, Kabanov AV. Effect of pluronic P85 on ATPase activity of drug efflux transporters. Pharm Res. 2004;21:2226–2233. doi: 10.1007/s11095-004-7675-5. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The AAPS Journal are provided here courtesy of American Association of Pharmaceutical Scientists

RESOURCES