Skip to main content
Molecular Biology of the Cell logoLink to Molecular Biology of the Cell
. 1996 Jul;7(7):1003–1014. doi: 10.1091/mbc.7.7.1003

Proteins in unexpected locations.

N R Smalheiser 1
PMCID: PMC275954  PMID: 8862516

Abstract

Members of all classes of proteins--cytoskeletal components, secreted growth factors, glycolytic enzymes, kinases, transcription factors, chaperones, transmembrane proteins, and extracellular matrix proteins--have been identified in cellular compartments other than their conventional sites of action. Some of these proteins are expressed as distinct compartment-specific isoforms, have novel mechanisms for intercompartmental translocation, have distinct endogenous biological actions within each compartment, and are regulated in a compartment-specific manner as a function of physiologic state. The possibility that many, if not most, proteins have distinct roles in more than one cellular compartment has implications for the evolution of cell organization and may be important for understanding pathological conditions such as Alzheimer's disease and cancer.

Full text

PDF
1011

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aihara N., Tanno H., Hall J. J., Pitts L. H., Noble L. J. Immunocytochemical localization of immunoglobulins in the rat brain: relationship to the blood-brain barrier. J Comp Neurol. 1994 Apr 22;342(4):481–496. doi: 10.1002/cne.903420402. [DOI] [PubMed] [Google Scholar]
  2. Alvarado M. V., Castejón H. V. Histochemical demonstration of cytoplasmic glycosaminoglycans in the macroneurons of the human central nervous system. J Neurosci Res. 1984;11(1):13–26. doi: 10.1002/jnr.490110103. [DOI] [PubMed] [Google Scholar]
  3. Angelov D. N., Neiss W. F., Gunkel A., Guntinas-Lichius O., Stennert E. Axotomy induces intranuclear immunolocalization of neuron-specific enolase in facial and hypoglossal neurons of the rat. J Neurocytol. 1994 Apr;23(4):218–233. doi: 10.1007/BF01275526. [DOI] [PubMed] [Google Scholar]
  4. Aquino D. A., Margolis R. U., Margolis R. K. Immunocytochemical localization of a chondroitin sulfate proteoglycan in nervous tissue. I. Adult brain, retina, and peripheral nerve. J Cell Biol. 1984 Sep;99(3):1117–1129. doi: 10.1083/jcb.99.3.1117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Aquino D. A., Margolis R. U., Margolis R. K. Immunocytochemical localization of a chondroitin sulfate proteoglycan in nervous tissue. II. Studies in developing brain. J Cell Biol. 1984 Sep;99(3):1130–1139. doi: 10.1083/jcb.99.3.1130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Auth D., Brawerman G. A 33-kDa polypeptide with homology to the laminin receptor: component of translation machinery. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4368–4372. doi: 10.1073/pnas.89.10.4368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bachs O., Agell N., Carafoli E. Calcium and calmodulin function in the cell nucleus. Biochim Biophys Acta. 1992 Aug 14;1113(2):259–270. doi: 10.1016/0304-4157(92)90041-8. [DOI] [PubMed] [Google Scholar]
  8. Bachvaroff R. J., Miller F., Rapaport F. T. Appearance of cytoskeletal components on the surface of leukemia cells and of lymphocytes transformed by mitogens and Epstein-Barr virus. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4979–4983. doi: 10.1073/pnas.77.8.4979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Barger S. W., Wolchok S. R., Van Eldik L. J. Disulfide-linked S100 beta dimers and signal transduction. Biochim Biophys Acta. 1992 Nov 10;1160(1):105–112. doi: 10.1016/0167-4838(92)90043-d. [DOI] [PubMed] [Google Scholar]
  10. Berberich S. J., Cole M. D. Casein kinase II inhibits the DNA-binding activity of Max homodimers but not Myc/Max heterodimers. Genes Dev. 1992 Feb;6(2):166–176. doi: 10.1101/gad.6.2.166. [DOI] [PubMed] [Google Scholar]
  11. Bousset K., Henriksson M., Lüscher-Firzlaff J. M., Litchfield D. W., Lüscher B. Identification of casein kinase II phosphorylation sites in Max: effects on DNA-binding kinetics of Max homo- and Myc/Max heterodimers. Oncogene. 1993 Dec;8(12):3211–3220. [PubMed] [Google Scholar]
  12. Brady R. M., Zinkowski R. P., Binder L. I. Presence of tau in isolated nuclei from human brain. Neurobiol Aging. 1995 May-Jun;16(3):479–486. doi: 10.1016/0197-4580(95)00023-8. [DOI] [PubMed] [Google Scholar]
  13. Bugler B., Amalric F., Prats H. Alternative initiation of translation determines cytoplasmic or nuclear localization of basic fibroblast growth factor. Mol Cell Biol. 1991 Jan;11(1):573–577. doi: 10.1128/mcb.11.1.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Busch S. J., Martin G. A., Barnhart R. L., Mano M., Cardin A. D., Jackson R. L. Trans-repressor activity of nuclear glycosaminoglycans on Fos and Jun/AP-1 oncoprotein-mediated transcription. J Cell Biol. 1992 Jan;116(1):31–42. doi: 10.1083/jcb.116.1.31. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Chen L. B., Murray A., Segal R. A., Bushnell A., Walsh M. L. Studies on intercellular LETS glycoprotein matrices. Cell. 1978 Jun;14(2):377–391. doi: 10.1016/0092-8674(78)90123-x. [DOI] [PubMed] [Google Scholar]
  16. Chen Y., Chen C. F., Riley D. J., Allred D. C., Chen P. L., Von Hoff D., Osborne C. K., Lee W. H. Aberrant subcellular localization of BRCA1 in breast cancer. Science. 1995 Nov 3;270(5237):789–791. doi: 10.1126/science.270.5237.789. [DOI] [PubMed] [Google Scholar]
  17. Cho-Chung Y. S., Pepe S., Clair T., Budillon A., Nesterova M. cAMP-dependent protein kinase: role in normal and malignant growth. Crit Rev Oncol Hematol. 1995 Nov;21(1-3):33–61. doi: 10.1016/1040-8428(94)00166-9. [DOI] [PubMed] [Google Scholar]
  18. Clarke M. S., Caldwell R. W., Chiao H., Miyake K., McNeil P. L. Contraction-induced cell wounding and release of fibroblast growth factor in heart. Circ Res. 1995 Jun;76(6):927–934. doi: 10.1161/01.res.76.6.927. [DOI] [PubMed] [Google Scholar]
  19. Clarke M. S., Khakee R., McNeil P. L. Loss of cytoplasmic basic fibroblast growth factor from physiologically wounded myofibers of normal and dystrophic muscle. J Cell Sci. 1993 Sep;106(Pt 1):121–133. doi: 10.1242/jcs.106.1.121. [DOI] [PubMed] [Google Scholar]
  20. Colman A. An overview of conventional and novel routes of protein secretion. Biochem Soc Trans. 1991 Apr;19(2):249–252. doi: 10.1042/bst0190249. [DOI] [PubMed] [Google Scholar]
  21. Dagher S. F., Wang J. L., Patterson R. J. Identification of galectin-3 as a factor in pre-mRNA splicing. Proc Natl Acad Sci U S A. 1995 Feb 14;92(4):1213–1217. doi: 10.1073/pnas.92.4.1213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Derossi D., Joliot A. H., Chassaing G., Prochiantz A. The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem. 1994 Apr 8;269(14):10444–10450. [PubMed] [Google Scholar]
  23. Donato R. Perspectives in S-100 protein biology. Review article. Cell Calcium. 1991 Nov;12(10):713–726. doi: 10.1016/0143-4160(91)90040-l. [DOI] [PubMed] [Google Scholar]
  24. Estridge M. Polypeptides similar to the alpha and beta subunits of tubulin are exposed on the neuronal surface. Nature. 1977 Jul 7;268(5615):60–63. doi: 10.1038/268060a0. [DOI] [PubMed] [Google Scholar]
  25. Evans S. C., Youakim A., Shur B. D. Biological consequences of targeting beta 1,4-galactosyltransferase to two different subcellular compartments. Bioessays. 1995 Mar;17(3):261–268. doi: 10.1002/bies.950170313. [DOI] [PubMed] [Google Scholar]
  26. Fawell S., Seery J., Daikh Y., Moore C., Chen L. L., Pepinsky B., Barsoum J. Tat-mediated delivery of heterologous proteins into cells. Proc Natl Acad Sci U S A. 1994 Jan 18;91(2):664–668. doi: 10.1073/pnas.91.2.664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Fedarko N. S., Conrad H. E. A unique heparan sulfate in the nuclei of hepatocytes: structural changes with the growth state of the cells. J Cell Biol. 1986 Feb;102(2):587–599. doi: 10.1083/jcb.102.2.587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Flaccus A., Janetzko A., Tekotte H., Margolis R. K., Margolis R. U. Immunocytochemical localization of chondroitin and chondroitin 4- and 6-sulfates in developing rat cerebellum. J Neurochem. 1991 May;56(5):1608–1615. doi: 10.1111/j.1471-4159.1991.tb02058.x. [DOI] [PubMed] [Google Scholar]
  29. Foltz K. R., Partin J. S., Lennarz W. J. Sea urchin egg receptor for sperm: sequence similarity of binding domain and hsp70. Science. 1993 Mar 5;259(5100):1421–1425. doi: 10.1126/science.8383878. [DOI] [PubMed] [Google Scholar]
  30. Furukawa K., Terayama H. Isolation and identification of glycosaminoglycans associated with purified nuclei from rat liver. Biochim Biophys Acta. 1977 Sep 29;499(2):278–289. doi: 10.1016/0304-4165(77)90010-1. [DOI] [PubMed] [Google Scholar]
  31. Goncz K. K., Rothman S. S. A trans-membrane pore can account for protein movement across zymogen granule membranes. Biochim Biophys Acta. 1995 Aug 23;1238(1):91–93. doi: 10.1016/0005-2736(95)00128-p. [DOI] [PubMed] [Google Scholar]
  32. Gurney M. E., Heinrich S. P., Lee M. R., Yin H. S. Molecular cloning and expression of neuroleukin, a neurotrophic factor for spinal and sensory neurons. Science. 1986 Oct 31;234(4776):566–574. doi: 10.1126/science.3764429. [DOI] [PubMed] [Google Scholar]
  33. Hagg T., Muir D., Engvall E., Varon S., Manthorpe M. Laminin-like antigen in rat CNS neurons: distribution and changes upon brain injury and nerve growth factor treatment. Neuron. 1989 Dec;3(6):721–732. doi: 10.1016/0896-6273(89)90241-9. [DOI] [PubMed] [Google Scholar]
  34. Hamilton R. L., Wong J. S., Guo L. S., Krisans S., Havel R. J. Apolipoprotein E localization in rat hepatocytes by immunogold labeling of cryothin sections. J Lipid Res. 1990 Sep;31(9):1589–1603. [PubMed] [Google Scholar]
  35. Han S. H., Einstein G., Weisgraber K. H., Strittmatter W. J., Saunders A. M., Pericak-Vance M., Roses A. D., Schmechel D. E. Apolipoprotein E is localized to the cytoplasm of human cortical neurons: a light and electron microscopic study. J Neuropathol Exp Neurol. 1994 Sep;53(5):535–544. doi: 10.1097/00005072-199409000-00013. [DOI] [PubMed] [Google Scholar]
  36. Han S. H., Hulette C., Saunders A. M., Einstein G., Pericak-Vance M., Strittmatter W. J., Roses A. D., Schmechel D. E. Apolipoprotein E is present in hippocampal neurons without neurofibrillary tangles in Alzheimer's disease and in age-matched controls. Exp Neurol. 1994 Jul;128(1):13–26. doi: 10.1006/exnr.1994.1108. [DOI] [PubMed] [Google Scholar]
  37. Hansen L. K., Houchins J. P., O'Leary J. J. Differential regulation of HSC70, HSP70, HSP90 alpha, and HSP90 beta mRNA expression by mitogen activation and heat shock in human lymphocytes. Exp Cell Res. 1991 Feb;192(2):587–596. doi: 10.1016/0014-4827(91)90080-e. [DOI] [PubMed] [Google Scholar]
  38. Harrison F. L. Soluble vertebrate lectins: ubiquitous but inscrutable proteins. J Cell Sci. 1991 Sep;100(Pt 1):9–14. doi: 10.1242/jcs.100.1.9. [DOI] [PubMed] [Google Scholar]
  39. Hiscock D. R., Yanagishita M., Hascall V. C. Nuclear localization of glycosaminoglycans in rat ovarian granulosa cells. J Biol Chem. 1994 Feb 11;269(6):4539–4546. [PubMed] [Google Scholar]
  40. Hofmann C., Gropp R., von der Mark K. Expression of anchorin CII, a collagen-binding protein of the annexin family, in the developing chick embryo. Dev Biol. 1992 Jun;151(2):391–400. doi: 10.1016/0012-1606(92)90179-k. [DOI] [PubMed] [Google Scholar]
  41. Hogan M. V., Pawlowska Z., Yang H. A., Kornecki E., Ehrlich Y. H. Surface phosphorylation by ecto-protein kinase C in brain neurons: a target for Alzheimer's beta-amyloid peptides. J Neurochem. 1995 Nov;65(5):2022–2030. doi: 10.1046/j.1471-4159.1995.65052022.x. [DOI] [PubMed] [Google Scholar]
  42. Holtzman D. M., Pitas R. E., Kilbridge J., Nathan B., Mahley R. W., Bu G., Schwartz A. L. Low density lipoprotein receptor-related protein mediates apolipoprotein E-dependent neurite outgrowth in a central nervous system-derived neuronal cell line. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9480–9484. doi: 10.1073/pnas.92.21.9480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Huang D. Y., Weisgraber K. H., Strittmatter W. J., Matthew W. D. Interaction of apolipoprotein E with laminin increases neuronal adhesion and alters neurite morphology. Exp Neurol. 1995 Dec;136(2):251–257. doi: 10.1006/exnr.1995.1101. [DOI] [PubMed] [Google Scholar]
  44. Ishitani R., Sunaga K., Hirano A., Saunders P., Katsube N., Chuang D. M. Evidence that glyceraldehyde-3-phosphate dehydrogenase is involved in age-induced apoptosis in mature cerebellar neurons in culture. J Neurochem. 1996 Mar;66(3):928–935. doi: 10.1046/j.1471-4159.1996.66030928.x. [DOI] [PubMed] [Google Scholar]
  45. Jackson R. L., Busch S. J., Cardin A. D. Glycosaminoglycans: molecular properties, protein interactions, and role in physiological processes. Physiol Rev. 1991 Apr;71(2):481–539. doi: 10.1152/physrev.1991.71.2.481. [DOI] [PubMed] [Google Scholar]
  46. Jensen R. A., Thompson M. E., Jetton T. L., Szabo C. I., van der Meer R., Helou B., Tronick S. R., Page D. L., King M. C., Holt J. T. BRCA1 is secreted and exhibits properties of a granin. Nat Genet. 1996 Mar;12(3):303–308. doi: 10.1038/ng0396-303. [DOI] [PubMed] [Google Scholar]
  47. Jiang L. W., Schindler M. Nucleocytoplasmic transport is enhanced concomitant with nuclear accumulation of epidermal growth factor (EGF) binding activity in both 3T3-1 and EGF receptor reconstituted NR-6 fibroblasts. J Cell Biol. 1990 Mar;110(3):559–568. doi: 10.1083/jcb.110.3.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Johannes F. J., Prestle J., Eis S., Oberhagemann P., Pfizenmaier K. PKCu is a novel, atypical member of the protein kinase C family. J Biol Chem. 1994 Feb 25;269(8):6140–6148. [PubMed] [Google Scholar]
  49. Joliot A. H., Triller A., Volovitch M., Pernelle C., Prochiantz A. alpha-2,8-Polysialic acid is the neuronal surface receptor of antennapedia homeobox peptide. New Biol. 1991 Nov;3(11):1121–1134. [PubMed] [Google Scholar]
  50. Jordan P., Heid H., Kinzel V., Kübler D. Major cell surface-located protein substrates of an ecto-protein kinase are homologs of known nuclear proteins. Biochemistry. 1994 Dec 13;33(49):14696–14706. doi: 10.1021/bi00253a007. [DOI] [PubMed] [Google Scholar]
  51. Jucker M., Bialobok P., Hagg T., Ingram D. K. Laminin immunohistochemistry in brain is dependent on method of tissue fixation. Brain Res. 1992 Jul 17;586(1):166–170. doi: 10.1016/0006-8993(92)91390-z. [DOI] [PubMed] [Google Scholar]
  52. Karpel R., Sternfeld M., Ginzberg D., Guhl E., Graessmann A., Soreq H. Overexpression of alternative human acetylcholinesterase forms modulates process extensions in cultured glioma cells. J Neurochem. 1996 Jan;66(1):114–123. doi: 10.1046/j.1471-4159.1996.66010114.x. [DOI] [PubMed] [Google Scholar]
  53. Kearney P. H., Ebert M., Kuret J. Molecular cloning and sequence analysis of two novel fission yeast casein kinase-1 isoforms. Biochem Biophys Res Commun. 1994 Aug 30;203(1):231–236. doi: 10.1006/bbrc.1994.2172. [DOI] [PubMed] [Google Scholar]
  54. Kibbey M. C., Johnson B., Petryshyn R., Jucker M., Kleinman H. K. A 110-kD nuclear shuttling protein, nucleolin, binds to the neurite-promoting IKVAV site of laminin-1. J Neurosci Res. 1995 Oct 15;42(3):314–322. doi: 10.1002/jnr.490420305. [DOI] [PubMed] [Google Scholar]
  55. Kleinman H. K., Weeks B. S., Cannon F. B., Sweeney T. M., Sephel G. C., Clement B., Zain M., Olson M. O., Jucker M., Burrous B. A. Identification of a 110-kDa nonintegrin cell surface laminin-binding protein which recognizes an A chain neurite-promoting peptide. Arch Biochem Biophys. 1991 Nov 1;290(2):320–325. doi: 10.1016/0003-9861(91)90547-v. [DOI] [PubMed] [Google Scholar]
  56. Kopan R., Nye J. S., Weintraub H. The intracellular domain of mouse Notch: a constitutively activated repressor of myogenesis directed at the basic helix-loop-helix region of MyoD. Development. 1994 Sep;120(9):2385–2396. doi: 10.1242/dev.120.9.2385. [DOI] [PubMed] [Google Scholar]
  57. Krek W., Maridor G., Nigg E. A. Casein kinase II is a predominantly nuclear enzyme. J Cell Biol. 1992 Jan;116(1):43–55. doi: 10.1083/jcb.116.1.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Krishna Rao A. S., Hausman R. E. cDNA for R-cognin: homology with a multifunctional protein. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2950–2954. doi: 10.1073/pnas.90.7.2950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Kuchler K., Thorner J. Membrane translocation of proteins without hydrophobic signal peptides. Curr Opin Cell Biol. 1990 Aug;2(4):617–624. doi: 10.1016/0955-0674(90)90102-k. [DOI] [PubMed] [Google Scholar]
  60. Kübler D., Reinhardt D., Reed J., Pyerin W., Kinzel V. Atrial natriuretic peptide is phosphorylated by intact cells through cAMP-dependent ecto-protein kinase. Eur J Biochem. 1992 May 15;206(1):179–186. doi: 10.1111/j.1432-1033.1992.tb16915.x. [DOI] [PubMed] [Google Scholar]
  61. Lee S., Chen D. Y., Humphrey J. S., Gnarra J. R., Linehan W. M., Klausner R. D. Nuclear/cytoplasmic localization of the von Hippel-Lindau tumor suppressor gene product is determined by cell density. Proc Natl Acad Sci U S A. 1996 Mar 5;93(5):1770–1775. doi: 10.1073/pnas.93.5.1770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Lieber T., Kidd S., Alcamo E., Corbin V., Young M. W. Antineurogenic phenotypes induced by truncated Notch proteins indicate a role in signal transduction and may point to a novel function for Notch in nuclei. Genes Dev. 1993 Oct;7(10):1949–1965. doi: 10.1101/gad.7.10.1949. [DOI] [PubMed] [Google Scholar]
  63. Lin A., Frost J., Deng T., Smeal T., al-Alawi N., Kikkawa U., Hunter T., Brenner D., Karin M. Casein kinase II is a negative regulator of c-Jun DNA binding and AP-1 activity. Cell. 1992 Sep 4;70(5):777–789. doi: 10.1016/0092-8674(92)90311-y. [DOI] [PubMed] [Google Scholar]
  64. Lin Y. Z., Yao S. Y., Hawiger J. Role of the nuclear localization sequence in fibroblast growth factor-1-stimulated mitogenic pathways. J Biol Chem. 1996 Mar 8;271(10):5305–5308. doi: 10.1074/jbc.271.10.5305. [DOI] [PubMed] [Google Scholar]
  65. Locke M., Noble E. G., Tanguay R. M., Feild M. R., Ianuzzo S. E., Ianuzzo C. D. Activation of heat-shock transcription factor in rat heart after heat shock and exercise. Am J Physiol. 1995 Jun;268(6 Pt 1):C1387–C1394. doi: 10.1152/ajpcell.1995.268.6.C1387. [DOI] [PubMed] [Google Scholar]
  66. Loomis P. A., Howard T. H., Castleberry R. P., Binder L. I. Identification of nuclear tau isoforms in human neuroblastoma cells. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8422–8426. doi: 10.1073/pnas.87.21.8422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Lotz M. M., Andrews C. W., Jr, Korzelius C. A., Lee E. C., Steele G. D., Jr, Clarke A., Mercurio A. M. Decreased expression of Mac-2 (carbohydrate binding protein 35) and loss of its nuclear localization are associated with the neoplastic progression of colon carcinoma. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3466–3470. doi: 10.1073/pnas.90.8.3466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Lu Q., Wood J. G. Characterization of fluorescently derivatized bovine tau protein and its localization and functions in cultured Chinese hamster ovary cells. Cell Motil Cytoskeleton. 1993;25(2):190–200. doi: 10.1002/cm.970250208. [DOI] [PubMed] [Google Scholar]
  69. Luby-Phelps K., Hori M., Phelps J. M., Won D. Ca(2+)-regulated dynamic compartmentalization of calmodulin in living smooth muscle cells. J Biol Chem. 1995 Sep 15;270(37):21532–21538. doi: 10.1074/jbc.270.37.21532. [DOI] [PubMed] [Google Scholar]
  70. Lyman D., Young M. W. Further evidence for function of the Drosophila Notch protein as a transmembrane receptor. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10395–10399. doi: 10.1073/pnas.90.21.10395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Løberg E. M., Torvik A. Neuronal uptake of plasma proteins in brain contusions. An immunohistochemical study. Acta Neuropathol. 1992;84(3):234–237. doi: 10.1007/BF00227814. [DOI] [PubMed] [Google Scholar]
  72. Løberg E. M., Torvik A. Uptake of plasma proteins into damaged neurons. An experimental study on cryogenic lesions in rats. Acta Neuropathol. 1991;81(5):479–485. doi: 10.1007/BF00310126. [DOI] [PubMed] [Google Scholar]
  73. Lüscher B., Kuenzel E. A., Krebs E. G., Eisenman R. N. Myc oncoproteins are phosphorylated by casein kinase II. EMBO J. 1989 Apr;8(4):1111–1119. doi: 10.1002/j.1460-2075.1989.tb03481.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Margolis R. K., Crockett C. P., Kiang W. L., Margolis R. U. Glycosaminoglycans and glycoproteins associated with rat brain nuclei. Biochim Biophys Acta. 1976 Dec 21;451(2):465–469. doi: 10.1016/0304-4165(76)90141-0. [DOI] [PubMed] [Google Scholar]
  75. Masliah E., Mallory M., Ge N., Alford M., Veinbergs I., Roses A. D. Neurodegeneration in the central nervous system of apoE-deficient mice. Exp Neurol. 1995 Dec;136(2):107–122. doi: 10.1006/exnr.1995.1088. [DOI] [PubMed] [Google Scholar]
  76. McNeil P. L. Cellular and molecular adaptations to injurious mechanical stress. Trends Cell Biol. 1993 Sep;3(9):302–307. doi: 10.1016/0962-8924(93)90012-p. [DOI] [PubMed] [Google Scholar]
  77. McNeil P. L., Khakee R. Disruptions of muscle fiber plasma membranes. Role in exercise-induced damage. Am J Pathol. 1992 May;140(5):1097–1109. [PMC free article] [PubMed] [Google Scholar]
  78. Mecham R. P., Hinek A., Entwistle R., Wrenn D. S., Griffin G. L., Senior R. M. Elastin binds to a multifunctional 67-kilodalton peripheral membrane protein. Biochemistry. 1989 May 2;28(9):3716–3722. doi: 10.1021/bi00435a014. [DOI] [PubMed] [Google Scholar]
  79. Meisner H., Czech M. P. Phosphorylation of transcriptional factors and cell-cycle-dependent proteins by casein kinase II. Curr Opin Cell Biol. 1991 Jun;3(3):474–483. doi: 10.1016/0955-0674(91)90076-b. [DOI] [PubMed] [Google Scholar]
  80. Metzger R. E., LaDu M. J., Pan J. B., Getz G. S., Frail D. E., Falduto M. T. Neurons of the human frontal cortex display apolipoprotein E immunoreactivity: implications for Alzheimer's disease. J Neuropathol Exp Neurol. 1996 Mar;55(3):372–380. doi: 10.1097/00005072-199603000-00013. [DOI] [PubMed] [Google Scholar]
  81. Michaelson J. Cellular selection in the genesis of multicellular organization. Lab Invest. 1993 Aug;69(2):136–151. [PubMed] [Google Scholar]
  82. Mignatti P., Morimoto T., Rifkin D. B. Basic fibroblast growth factor, a protein devoid of secretory signal sequence, is released by cells via a pathway independent of the endoplasmic reticulum-Golgi complex. J Cell Physiol. 1992 Apr;151(1):81–93. doi: 10.1002/jcp.1041510113. [DOI] [PubMed] [Google Scholar]
  83. Mizrachi Y. Neurotrophic activity of monomeric glucophosphoisomerase was blocked by human immunodeficiency virus (HIV-1) and peptides from HIV-1 envelope glycoprotein. J Neurosci Res. 1989 Jun;23(2):217–224. doi: 10.1002/jnr.490230212. [DOI] [PubMed] [Google Scholar]
  84. Moroianu J., Fett J. W., Riordan J. F., Vallee B. L. Actin is a surface component of calf pulmonary artery endothelial cells in culture. Proc Natl Acad Sci U S A. 1993 May 1;90(9):3815–3819. doi: 10.1073/pnas.90.9.3815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Murtomäki S., Risteli J., Risteli L., Koivisto U. M., Johansson S., Liesi P. Laminin and its neurite outgrowth-promoting domain in the brain in Alzheimer's disease and Down's syndrome patients. J Neurosci Res. 1992 Jun;32(2):261–273. doi: 10.1002/jnr.490320216. [DOI] [PubMed] [Google Scholar]
  86. Muthukrishnan L., Warder E., McNeil P. L. Basic fibroblast growth factor is efficiently released from a cytolsolic storage site through plasma membrane disruptions of endothelial cells. J Cell Physiol. 1991 Jul;148(1):1–16. doi: 10.1002/jcp.1041480102. [DOI] [PubMed] [Google Scholar]
  87. Nathan B. P., Chang K. C., Bellosta S., Brisch E., Ge N., Mahley R. W., Pitas R. E. The inhibitory effect of apolipoprotein E4 on neurite outgrowth is associated with microtubule depolymerization. J Biol Chem. 1995 Aug 25;270(34):19791–19799. doi: 10.1074/jbc.270.34.19791. [DOI] [PubMed] [Google Scholar]
  88. Nobusada H., Taguchi T. Actin molecules promote neurite outgrowth of chick telencephalic neurons in vitro. Biochem Biophys Res Commun. 1992 Jan 15;182(1):39–44. doi: 10.1016/s0006-291x(05)80109-3. [DOI] [PubMed] [Google Scholar]
  89. Oelgeschläger M., Krieg J., Lüscher-Firzlaff J. M., Lüscher B. Casein kinase II phosphorylation site mutations in c-Myb affect DNA binding and transcriptional cooperativity with NF-M. Mol Cell Biol. 1995 Nov;15(11):5966–5974. doi: 10.1128/mcb.15.11.5966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Owen M. J., Auger J., Barber B. H., Edwards A. J., Walsh F. S., Crumpton M. J. Actin may be present on the lymphocyte surface. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4484–4488. doi: 10.1073/pnas.75.9.4484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Pardridge W. M., Nowlin D. M., Choi T. B., Yang J., Calaycay J., Shively J. E. Brain capillary 46,000 dalton protein is cytoplasmic actin and is localized to endothelial plasma membrane. J Cereb Blood Flow Metab. 1989 Oct;9(5):675–680. doi: 10.1038/jcbfm.1989.95. [DOI] [PubMed] [Google Scholar]
  92. Parfenov V. N., Davis D. S., Pochukalina G. N., Sample C. E., Bugaeva E. A., Murti K. G. Nuclear actin filaments and their topological changes in frog oocytes. Exp Cell Res. 1995 Apr;217(2):385–394. doi: 10.1006/excr.1995.1101. [DOI] [PubMed] [Google Scholar]
  93. Partanen J., Vainikka S., Alitalo K. Structural and functional specificity of FGF receptors. Philos Trans R Soc Lond B Biol Sci. 1993 Jun 29;340(1293):297–303. doi: 10.1098/rstb.1993.0071. [DOI] [PubMed] [Google Scholar]
  94. Pepperkok R., Lorenz P., Ansorge W., Pyerin W. Casein kinase II is required for transition of G0/G1, early G1, and G1/S phases of the cell cycle. J Biol Chem. 1994 Mar 4;269(9):6986–6991. [PubMed] [Google Scholar]
  95. Perez F., Joliot A., Bloch-Gallego E., Zahraoui A., Triller A., Prochiantz A. Antennapedia homeobox as a signal for the cellular internalization and nuclear addressing of a small exogenous peptide. J Cell Sci. 1992 Aug;102(Pt 4):717–722. doi: 10.1242/jcs.102.4.717. [DOI] [PubMed] [Google Scholar]
  96. Pfäffle M., Ruggiero F., Hofmann H., Fernández M. P., Selmin O., Yamada Y., Garrone R., von der Mark K. Biosynthesis, secretion and extracellular localization of anchorin CII, a collagen-binding protein of the calpactin family. EMBO J. 1988 Aug;7(8):2335–2342. doi: 10.1002/j.1460-2075.1988.tb03077.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Piatigorsky J., Wistow G. J. Enzyme/crystallins: gene sharing as an evolutionary strategy. Cell. 1989 Apr 21;57(2):197–199. doi: 10.1016/0092-8674(89)90956-2. [DOI] [PubMed] [Google Scholar]
  98. Podlecki D. A., Smith R. M., Kao M., Tsai P., Huecksteadt T., Brandenburg D., Lasher R. S., Jarett L., Olefsky J. M. Nuclear translocation of the insulin receptor. A possible mediator of insulin's long term effects. J Biol Chem. 1987 Mar 5;262(7):3362–3368. [PubMed] [Google Scholar]
  99. Pollard T. D., Cooper J. A. Actin and actin-binding proteins. A critical evaluation of mechanisms and functions. Annu Rev Biochem. 1986;55:987–1035. doi: 10.1146/annurev.bi.55.070186.005011. [DOI] [PubMed] [Google Scholar]
  100. Por S. B., Cooley M. A., Breit S. N., Penny R., French P. W. Antibodies to tubulin and actin bind to the surface of a human monocytic cell line, U937. J Histochem Cytochem. 1991 Jul;39(7):981–985. doi: 10.1177/39.7.1865114. [DOI] [PubMed] [Google Scholar]
  101. Portolés M., Faura M., Renau-Piqueras J., Iborra F. J., Saez R., Guerri C., Serratosa J., Rius E., Bachs O. Nuclear calmodulin/62 kDa calmodulin-binding protein complexes in interphasic and mitotic cells. J Cell Sci. 1994 Dec;107(Pt 12):3601–3614. doi: 10.1242/jcs.107.12.3601. [DOI] [PubMed] [Google Scholar]
  102. Prochiantz A., Théodore L. Nuclear/growth factors. Bioessays. 1995 Jan;17(1):39–44. doi: 10.1002/bies.950170109. [DOI] [PubMed] [Google Scholar]
  103. Pugsley A. P. On remaining cytoplasmic. Biochimie. 1990 Feb-Mar;72(2-3):89–94. doi: 10.1016/0300-9084(90)90133-2. [DOI] [PubMed] [Google Scholar]
  104. Rauch U., Gao P., Janetzko A., Flaccus A., Hilgenberg L., Tekotte H., Margolis R. K., Margolis R. U. Isolation and characterization of developmentally regulated chondroitin sulfate and chondroitin/keratan sulfate proteoglycans of brain identified with monoclonal antibodies. J Biol Chem. 1991 Aug 5;266(22):14785–14801. [PubMed] [Google Scholar]
  105. Rauch U., Karthikeyan L., Maurel P., Margolis R. U., Margolis R. K. Cloning and primary structure of neurocan, a developmentally regulated, aggregating chondroitin sulfate proteoglycan of brain. J Biol Chem. 1992 Sep 25;267(27):19536–19547. [PubMed] [Google Scholar]
  106. Raynal P., Pollard H. B. Annexins: the problem of assessing the biological role for a gene family of multifunctional calcium- and phospholipid-binding proteins. Biochim Biophys Acta. 1994 Apr 5;1197(1):63–93. doi: 10.1016/0304-4157(94)90019-1. [DOI] [PubMed] [Google Scholar]
  107. Rifkin D. B., Moscatelli D., Roghani M., Nagano Y., Quarto N., Klein S., Bikfalvi A. Studies on FGF-2: nuclear localization and function of high molecular weight forms and receptor binding in the absence of heparin. Mol Reprod Dev. 1994 Sep;39(1):102–105. doi: 10.1002/mrd.1080390115. [DOI] [PubMed] [Google Scholar]
  108. Ripellino J. A., Bailo M., Margolis R. U., Margolis R. K. Light and electron microscopic studies on the localization of hyaluronic acid in developing rat cerebellum. J Cell Biol. 1988 Mar;106(3):845–855. doi: 10.1083/jcb.106.3.845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Ripellino J. A., Margolis R. U., Margolis R. K. Immunoelectron microscopic localization of hyaluronic acid-binding region and link protein epitopes in brain. J Cell Biol. 1989 May;108(5):1899–1907. doi: 10.1083/jcb.108.5.1899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Ronai Z. Glycolytic enzymes as DNA binding proteins. Int J Biochem. 1993 Jul;25(7):1073–1076. doi: 10.1016/0020-711x(93)90123-v. [DOI] [PubMed] [Google Scholar]
  111. Roseman S. The synthesis of complex carbohydrates by multiglycosyltransferase systems and their potential function in intercellular adhesion. Chem Phys Lipids. 1970 Oct;5(1):270–297. doi: 10.1016/0009-3084(70)90024-1. [DOI] [PubMed] [Google Scholar]
  112. Rosenblatt H. M., Parikh N., McClure J. E., Meza I., Hwo S. Y., Bryan J., Shearer W. T. Mitogen-like monoclonal anti-actin antibodies. J Immunol. 1985 Aug;135(2):995–1000. [PubMed] [Google Scholar]
  113. Rubartelli A., Cozzolino F., Talio M., Sitia R. A novel secretory pathway for interleukin-1 beta, a protein lacking a signal sequence. EMBO J. 1990 May;9(5):1503–1510. doi: 10.1002/j.1460-2075.1990.tb08268.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Rubin R. W., Quillen M., Corcoran J. J., Ganapathi R., Krishan A. Tubulin as a major cell surface protein in human lymphoid cells of leukemic origin. Cancer Res. 1982 Apr;42(4):1384–1389. [PubMed] [Google Scholar]
  115. Safer D., Elzinga M., Nachmias V. T. Thymosin beta 4 and Fx, an actin-sequestering peptide, are indistinguishable. J Biol Chem. 1991 Mar 5;266(7):4029–4032. [PubMed] [Google Scholar]
  116. Sanders S. K., Craig S. W. A lymphocyte cell surface molecule that is antigenically related to actin. J Immunol. 1983 Jul;131(1):370–377. [PubMed] [Google Scholar]
  117. Sarthy P. V., Fu M. Localization of laminin B1 mRNA in retinal ganglion cells by in situ hybridization. J Cell Biol. 1990 Jun;110(6):2099–2108. doi: 10.1083/jcb.110.6.2099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. Semenkovich C. F., Ostlund R. E., Jr, Olson M. O., Yang J. W. A protein partially expressed on the surface of HepG2 cells that binds lipoproteins specifically is nucleolin. Biochemistry. 1990 Oct 16;29(41):9708–9713. doi: 10.1021/bi00493a028. [DOI] [PubMed] [Google Scholar]
  119. Skidmore R., Gutierrez J. A., Guerriero V., Jr, Kregel K. C. HSP70 induction during exercise and heat stress in rats: role of internal temperature. Am J Physiol. 1995 Jan;268(1 Pt 2):R92–R97. doi: 10.1152/ajpregu.1995.268.1.R92. [DOI] [PubMed] [Google Scholar]
  120. Soltys B. J., Gupta R. S. Immunoelectron microscopic localization of the 60-kDa heat shock chaperonin protein (Hsp60) in mammalian cells. Exp Cell Res. 1996 Jan 10;222(1):16–27. doi: 10.1006/excr.1996.0003. [DOI] [PubMed] [Google Scholar]
  121. Srinivasan M., Edman C. F., Schulman H. Alternative splicing introduces a nuclear localization signal that targets multifunctional CaM kinase to the nucleus. J Cell Biol. 1994 Aug;126(4):839–852. doi: 10.1083/jcb.126.4.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Stachowiak M. K., Moffett J., Joy A., Puchacz E., Florkiewicz R., Stachowiak E. K. Regulation of bFGF gene expression and subcellular distribution of bFGF protein in adrenal medullary cells. J Cell Biol. 1994 Oct;127(1):203–223. doi: 10.1083/jcb.127.1.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Strittmatter W. J., Weisgraber K. H., Goedert M., Saunders A. M., Huang D., Corder E. H., Dong L. M., Jakes R., Alberts M. J., Gilbert J. R. Hypothesis: microtubule instability and paired helical filament formation in the Alzheimer disease brain are related to apolipoprotein E genotype. Exp Neurol. 1994 Feb;125(2):163–174. doi: 10.1006/exnr.1994.1019. [DOI] [PubMed] [Google Scholar]
  124. Takei N., Kondo J., Nagaike K., Ohsawa K., Kato K., Kohsaka S. Neuronal survival factor from bovine brain is identical to neuron-specific enolase. J Neurochem. 1991 Oct;57(4):1178–1184. doi: 10.1111/j.1471-4159.1991.tb08277.x. [DOI] [PubMed] [Google Scholar]
  125. Turek J. J., Leamon C. P., Low P. S. Endocytosis of folate-protein conjugates: ultrastructural localization in KB cells. J Cell Sci. 1993 Sep;106(Pt 1):423–430. doi: 10.1242/jcs.106.1.423. [DOI] [PubMed] [Google Scholar]
  126. Vancurova I., Paine T. M., Lou W., Paine P. L. Nucleoplasmin associates with and is phosphorylated by casein kinase II. J Cell Sci. 1995 Feb;108(Pt 2):779–787. doi: 10.1242/jcs.108.2.779. [DOI] [PubMed] [Google Scholar]
  127. Vilgrain I., Baird A. Phosphorylation of basic fibroblast growth factor by a protein kinase associated with the outer surface of a target cell. Mol Endocrinol. 1991 Jul;5(7):1003–1012. doi: 10.1210/mend-5-7-1003. [DOI] [PubMed] [Google Scholar]
  128. Wang J., Campos B., Jamieson G. A., Jr, Kaetzel M. A., Dedman J. R. Functional elimination of calmodulin within the nucleus by targeted expression of an inhibitor peptide. J Biol Chem. 1995 Dec 22;270(51):30245–30248. doi: 10.1074/jbc.270.51.30245. [DOI] [PubMed] [Google Scholar]
  129. Wang Y., Loomis P. A., Zinkowski R. P., Binder L. I. A novel tau transcript in cultured human neuroblastoma cells expressing nuclear tau. J Cell Biol. 1993 Apr;121(2):257–267. doi: 10.1083/jcb.121.2.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. White T. K., Zhu Q., Tanzer M. L. Cell surface calreticulin is a putative mannoside lectin which triggers mouse melanoma cell spreading. J Biol Chem. 1995 Jul 7;270(27):15926–15929. doi: 10.1074/jbc.270.27.15926. [DOI] [PubMed] [Google Scholar]
  131. Williams D. L., Wong J. S., Wissig S. L., Hamilton R. L. Cell surface "blanket" of apolipoprotein E on rat adrenocortical cells. J Lipid Res. 1995 Apr;36(4):745–758. [PubMed] [Google Scholar]
  132. Wong K. Y., Hawley D., Vigneri R., Goldfine I. D. Comparison of solubilized and purified plasma membrane and nuclear insulin receptors. Biochemistry. 1988 Jan 12;27(1):375–379. doi: 10.1021/bi00401a056. [DOI] [PubMed] [Google Scholar]
  133. Woodward W. R., Nishi R., Meshul C. K., Williams T. E., Coulombe M., Eckenstein F. P. Nuclear and cytoplasmic localization of basic fibroblast growth factor in astrocytes and CA2 hippocampal neurons. J Neurosci. 1992 Jan;12(1):142–152. doi: 10.1523/JNEUROSCI.12-01-00142.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  134. Yamamoto T., Iwasaki Y., Yamamoto H., Konno H., Isemura M. Intraneuronal laminin-like molecule in the central nervous system: demonstration of its unique differential distribution. J Neurol Sci. 1988 Mar;84(1):1–13. doi: 10.1016/0022-510x(88)90169-4. [DOI] [PubMed] [Google Scholar]
  135. Yu I. J., Spector D. L., Bae Y. S., Marshak D. R. Immunocytochemical localization of casein kinase II during interphase and mitosis. J Cell Biol. 1991 Sep;114(6):1217–1232. doi: 10.1083/jcb.114.6.1217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. Yu Q. C., McNeil P. L. Transient disruptions of aortic endothelial cell plasma membranes. Am J Pathol. 1992 Dec;141(6):1349–1360. [PMC free article] [PubMed] [Google Scholar]
  137. Zhou F. C. Four patterns of laminin-immunoreactive structure in developing rat brain. Brain Res Dev Brain Res. 1990 Sep 1;55(2):191–201. doi: 10.1016/0165-3806(90)90200-i. [DOI] [PubMed] [Google Scholar]

Articles from Molecular Biology of the Cell are provided here courtesy of American Society for Cell Biology

RESOURCES