Skip to main content
AAPS PharmSci logoLink to AAPS PharmSci
. 1999 May 10;1(2):1–6. doi: 10.1208/ps010201

Glycylsarcosine uptake in rabbit renal brush border membrane vesicles isolated from outer cortex or outer medulla: Evidence for heterogeneous distribution of oligopeptide transporters

Chun-Jung Lin 1,, David E Smith 1,
PMCID: PMC2761116  PMID: 11741198

Abstract

Studies were initially performed in rabbit brush border membrane vesicles (BBMV) prepared from whole cortex plus outer medulla. In these studies using combined tissues, two distinct peptide/H+ transport systems were found for glycylsarcosine (GlySar) uptake, with one representing a low-affinity/high-capacity system (Vm1=974 pmol/mg/10 sec and Km1=4819 μM) and the other a high-affinity/low-capacity system (Vm2=220 pmol/mg/10 sec and Km2=96 μM). Thus, under linear conditions, the high-affinity transporter accounted for about 92% of the total transport of dipeptide. To better define the regional heterogeneity of peptide transporter activity in kidney, subsequent studies were performed in vesicles prepared from separately harvested outer cortical and outer medullary tissue. In BBMV studies prepared from outer cortex, two saturable components were revealed for GlySar transport (low-affinity/high-capacity transport system: Vm1=1921 pmol/mg/10 sec and Km1=11714 μM; high-affinity/low-capacity transport system: Vm2=143 pmol/mg/10 sec and Km2=138 μM). However, in BBMV studies prepared from outer medulla, only one saturable component was revealed for GlySar transport (high-affinity/low-capacity transport system: Vm2=168 pmol/mg/10 sec and Km2=230 μM). Overall, these studies support the contention that peptides are handled sequentially in kidney (ie, first by low-affinity transporter PEPT1, and then by high-affinity transporter PEPT2) and that PEPT2 is primarily responsible for the renal reabsorption of peptides and peptidomimetics.

KeyWords: Renal peptide heterogeneity, Low-affinity transporter, High-affinity transporter, Glycylsarcosine, Brush border membrane vesicles

References

  • 1.Fei Y-J, Kanai Y, Nussberger S, Ganapathy V, Leibach FH, Romero MF, Singh SK, Boron WF, Hediger MA. Expression cloning of a mammalian proton-coupled oligopeptide transporter. Nature. 1994;368:563–566. doi: 10.1038/368563a0. [DOI] [PubMed] [Google Scholar]
  • 2.Boll M, Markovich D, Weber W-M, Korte H, Daniel H, Murer H. Expression cloning of a cDNA from rabbit small intestine related to proton-coupled transport of peptides, β-lactam antibiotics and ACE-inhibitors. Pflügers Arch.-Eur. J. Physiol. 1994;429:146–149. doi: 10.1007/BF02584043. [DOI] [PubMed] [Google Scholar]
  • 3.Boll M, Herget M, Wagener M, Weber WM, Markovich D, Biber J, Clauss W, Murer H, Daniel H. Expression cloning and functional characterization of the kidney cortex high-affinity proton-coupled peptide transporter. Proc. Natl. Acad. Sci. USA. 1996;93:284–289. doi: 10.1073/pnas.93.1.284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Liang R, Fei Y-J, Prasad PD, Ramamoorthy S, Han H, Yang-Feng TL, Hediger MA, Ganapathy V, Leibach FH. Human intestinal H+/peptide cotransporter: Cloning, functional expression and chromosomal localization. J. Biol. Chem. 1995;270:6456–6463. doi: 10.1074/jbc.270.12.6456. [DOI] [PubMed] [Google Scholar]
  • 5.Liu W, Liang R, Ramamoorthy S, Fei Y-J, Ganapathy ME, Hediger MA, Ganapathy V, Leibach FH. Molecular cloning of PEPT 2, a new member of the H+/peptide cotransporter family, from human kidney. Biochim. Biophys. Acta. 1995;1235:461–466. doi: 10.1016/0005-2736(95)80036-F. [DOI] [PubMed] [Google Scholar]
  • 6.Miyamoto K-I, Shiraga T, Morita K, Yamamoto H, Haga H, Taketani Y, Tamai I, Sai Y, Tsuji A, Takeda E. Sequence, tissue distribution and developmental changes in rat intestinal oligopeptide transporter. Biochim. Biophys. Acta. 1996;1305:34–38. doi: 10.1016/0167-4781(95)00208-1. [DOI] [PubMed] [Google Scholar]
  • 7.Saito H, Okuda M, Terada T, Sasaki S, Inui K-I. Cloning and characterization of a rat H+/peptide cotransporter mediating absorption of β-lactam antibiotics in intestine and kidney. J. Pharmacol. Exp. Ther. 1995;275:1631–1637. [PubMed] [Google Scholar]
  • 8.Saito H, Terada T, Okuda M, Sasaki S, Inui K-I. Molecular cloning and tissue distribution of rat peptide transporter PEPT2. Biochim. Biophys. Acta. 1996;1280:173–177. doi: 10.1016/0005-2736(96)00024-7. [DOI] [PubMed] [Google Scholar]
  • 9.Freeman TC, Bentsen BS, Thwaites DT, Simmons NL. H+/Ditripeptide transporter (PEPT1) expression in the rabbit intestine. Pflügers Arch.-Eur. J. Physiol. 1995;430:394–400. doi: 10.1007/BF00373915. [DOI] [PubMed] [Google Scholar]
  • 10.Ogihara H, Saito H, Shin B-C, Terada T, Takenoshita S, Nagamachi Y, Inui K-I, Takata K. Immuno-localization of H+/peptide cotransporter in rat digestive tract. Biochem. Biophys. Res. Commun. 1996;220:848–852. doi: 10.1006/bbrc.1996.0493. [DOI] [PubMed] [Google Scholar]
  • 11.Smith DE, Pavlova A, Berger UV, Hediger MA, Yang T, Huang YG, Schnermann JB. Tubular localization and tissue distribution of peptide transporters in rat kidney. Pharm. Res. 1998;15:1244–1249. doi: 10.1023/A:1011996009332. [DOI] [PubMed] [Google Scholar]
  • 12.Shen H, Smith DE, Yang T, Huang YG, Schnermann JB, Brosius FC. Localization of PEPT1 and PEPT2 proton-coupled oligopeptide transporter mRNA and protein in rat kidney. Am. J. Physiol. 1999;276:F658–F665. doi: 10.1152/ajprenal.1999.276.5.F658. [DOI] [PubMed] [Google Scholar]
  • 13.Akarawut W, Lin C-J, Smith DE. Noncompetive inhibition of glycylsarcosine transport by quinapril in rabbit renal brush border membrane vesicles: Effect on high-affinity peptide transporter. J. Pharmacol. Exp. Ther. 1998;287:684–690. [PubMed] [Google Scholar]
  • 14.Miyamoto Y, Coone JL, Ganapathy V, Leibach FH. Distribution and properties of the glycylsarcosine-transport system in rabbit renal proximal tubule: Studies with isolated brush-border-membrane vesicles. biochem. J. 1988;249:247–253. doi: 10.1042/bj2490247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Turner RJ, Moran A. Heterogeneity of sodium-dependent D-glucose transport sites along the proximal tubule: Evidence from vesicle studies. Am. J. Physiol. 1982;242:F406–F414. doi: 10.1152/ajprenal.1982.242.4.F406. [DOI] [PubMed] [Google Scholar]
  • 16.Kragh-Hansen U, Røigaard-Petersen H, Jacobsen C, Sheikh MI. Renal transport of neutral amino acids: Tubular localization of Na+-dependent phenylalanine-and glucose-transport systems. Biochem. J. 1984;220:15–24. doi: 10.1042/bj2200015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Jørgensen PL, Skou JC. Purification and characterization of (Na+-K+)-ATPase in preREFtions from the outer medulla of rabbit kidney. Biochim. Biophys. Acta. 1971;233:366–380. doi: 10.1016/0005-2736(71)90334-8. [DOI] [PubMed] [Google Scholar]
  • 18.Fiske CH, Subbarow Y. The colorimetric determination of phosphorous. J. Biol. Chem. 1925;66:375–400. [Google Scholar]
  • 19.Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  • 20.Hopfer U, Nelson K, Perrotto J, Isselbacher KJ. Glucose transport in isolated brush-border membrane from rat small intestine. J. Biol. Chem. 1973;248:25–32. [PubMed] [Google Scholar]
  • 21.Ganapathy V, Burckhardt G, Leibach FH. Characteristics of glycylsarcosine transport in rabbit intestinal brush-border membrane vesicles. J. Biol. Chem. 1984;259:8954–8959. [PubMed] [Google Scholar]
  • 22.Silbernagl S, Ganapathy V, Leibach FH. H+ gradient-driven dipeptide reabsorption in proximal tubule of rat kidney. Studies in vivo and in vitro. Am. J. Physiol. 1987;253:F448–F457. doi: 10.1152/ajprenal.1987.253.3.F448. [DOI] [PubMed] [Google Scholar]
  • 23.Evers C, Haase W, Murer H, Kinne R. Properties of brush border vesicles isolated from rat kidney cortex by calcium precipitation. Membrane Biochem. 1978;1:203–219. doi: 10.3109/09687687809063848. [DOI] [PubMed] [Google Scholar]
  • 24.Griffiths DA, Hall SD, Sokol PP. Effect of 3-azido-3-deoxythymidine (AZT) on organic ion transport in rat renal brush border membrane vesicles. J. Pharmacol. Exp. Ther. 1992;260:128–133. [PubMed] [Google Scholar]
  • 25.McKinney TD, Kunnemann ME. Procainamide transport in rabbit renal cortical brush border membrane vesicles. Am. J. Physiol. 1985;249:F532–F541. doi: 10.1152/ajprenal.1985.249.4.F532. [DOI] [PubMed] [Google Scholar]
  • 26.Leibach FH, Ganapathy V. Peptide transporters in the intestine and the kidney. Annu. Rev. Nutr. 1996;16:99–119. doi: 10.1146/annurev.nu.16.070196.000531. [DOI] [PubMed] [Google Scholar]
  • 27.Daniel H, Herget M. Cellular and molecular mechanisms of renal peptide transport. Am. J. Physiol. 1997;273:F1–F8. doi: 10.1152/ajprenal.1997.273.1.F1. [DOI] [PubMed] [Google Scholar]

Articles from AAPS PharmSci are provided here courtesy of American Association of Pharmaceutical Scientists

RESOURCES