Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1966 Aug;92(2):455–463. doi: 10.1128/jb.92.2.455-463.1966

Genetic Recombination of Transforming Deoxyribonucleic Acid Molecules with the Recipient Genome and Among Themselves in Protoplasts of Bacillus subtilis

Hideo Hirokawa a,1, Yonosuke Ikeda b
PMCID: PMC276263  PMID: 16562135

Abstract

Hirokawa, Hideo (Southwest Center for Advanced Studies, Dallas, Tex.), and Yonosuke Ikeda. Genetic recombination of transforming deoxyribonucleic acid molecules with the recipient genome and among themselves in protoplasts of Bacillus subtilis. J. Bacteriol. 92:455–463. 1966.—Re-extraction of transforming deoxyribonucleic acid (DNA) from protoplasts of Bacillus subtilis is much more efficient than from intact competent cells. This facilitated the detection of physical recombination between donor and recipient DNA molecules, as indicated by a high cotransfer index of ind+ and his+ markers which were originally located in exogenous and endogenous DNA molecules, respectively. This recombinant DNA was extracted after 30 min of incubation of ind his+ protoplasts with ind+his DNA, previously extracted from a corresponding mutant strain of B. subtilis. The intracellular formation of recombinant molecules (ind+his+) bearing markers from two different exogenous DNA species was also detected 15 min after exposure of ind his recipient protoplasts to a mixture of ind+his and ind his+ donor DNA molecules. The unity of the recombinant molecule was ascertained by dilution experiments and by its being resistant to ribonuclease and trypsin treatment (but being sensitive to deoxyribonuclease). The formation of recombinant molecules showed an inverse kinetics to that of the intracellularly induced loss of linkage between the corresponding markers in the wild-type DNA, thus suggesting a breakage and reunion process which is also favored by the absence of DNA synthesis in the protoplasts and the effect of some specific inhibitors.

Full text

PDF
457

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BODMER W. F., GANESAN A. T. BIOCHEMICAL AND GENETIC STUDIES OF INTEGRATION AND RECOMBINATION IN BACILLUS SUBTILIS TRANSFORMATION. Genetics. 1964 Oct;50:717–738. doi: 10.1093/genetics/50.4.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. FOLSOME C. E. Inhibition of recombination and heterozygosis in phenyl ethyl alcohol-treated phage T4-E. coli B complexes. Biochem Biophys Res Commun. 1963 Apr 23;11:97–101. doi: 10.1016/0006-291x(63)90073-1. [DOI] [PubMed] [Google Scholar]
  4. FOX M. S., ALLEN M. K. ON THE MECHANISM OF DEOXYRIBONUCLEATE INTEGRATION IN PNEUMOCOCCAL TRANSFORMATION. Proc Natl Acad Sci U S A. 1964 Aug;52:412–419. doi: 10.1073/pnas.52.2.412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. FOX M. S., HOTCHKISS R. D. Fate of transforming deoxyribonucleate following fixation by transformable bacteria. Nature. 1960 Sep 17;187:1002–1006. doi: 10.1038/1871002a0. [DOI] [PubMed] [Google Scholar]
  6. GOLDBERG I. H., REICH E. ACTINOMYCIN INHIBITION OF RNA SYNTHESIS DIRECTED BY DNA. Fed Proc. 1964 Sep-Oct;23:958–964. [PubMed] [Google Scholar]
  7. Herriott R. M. FORMATION OF HETEROZYGOTES BY ANNEALING A MIXTURE OF TRANSFORMING DNAS. Proc Natl Acad Sci U S A. 1961 Feb;47(2):146–153. doi: 10.1073/pnas.47.2.146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. IYER V. N., SZYBALSKI W. A MOLECULAR MECHANISM OF MITOMYCIN ACTION: LINKING OF COMPLEMENTARY DNA STRANDS. Proc Natl Acad Sci U S A. 1963 Aug;50:355–362. doi: 10.1073/pnas.50.2.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. KOZINSKI A. W., KOZINSKI P. B. REPLICATIVE FRAGMENTATION IN T4 BACTERIOPHAGE DNA. II. BIPARENTAL MOLECULAR RECOMBINATION. Proc Natl Acad Sci U S A. 1964 Aug;52:211–218. doi: 10.1073/pnas.52.2.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. LACKS S. Molecular fate of DNA in genetic transformation of Pneumococcus. J Mol Biol. 1962 Jul;5:119–131. doi: 10.1016/s0022-2836(62)80067-9. [DOI] [PubMed] [Google Scholar]
  11. MARMUR J., DOTY P. Thermal renaturation of deoxyribonucleic acids. J Mol Biol. 1961 Oct;3:585–594. doi: 10.1016/s0022-2836(61)80023-5. [DOI] [PubMed] [Google Scholar]
  12. MESELSON M. ON THE MECHANISM OF GENETIC RECOMBINATION BETWEEN DNA MOLECULES. J Mol Biol. 1964 Sep;9:734–745. doi: 10.1016/s0022-2836(64)80178-9. [DOI] [PubMed] [Google Scholar]
  13. NESTER E. W., LEDERBERG J. Linkage of genetic units of Bacillus subtilis in DNA transformation. Proc Natl Acad Sci U S A. 1961 Jan 15;47:52–55. doi: 10.1073/pnas.47.1.52. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. NESTER E. W., STOCKER B. A. BIOSYNTHETIC LATENCY IN EARLY STAGES OF DEOXYRIBONUCLEIC ACIDTRANSFORMATION IN BACILLUS SUBTILIS. J Bacteriol. 1963 Oct;86:785–796. doi: 10.1128/jb.86.4.785-796.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. PENE J. J., ROMIG W. R. ON THE MECHANISM OF GENETIC RECOMBINATION IN TRANSFORMING BACILLUS SUBTILIS. J Mol Biol. 1964 Jul;9:236–245. doi: 10.1016/s0022-2836(64)80103-0. [DOI] [PubMed] [Google Scholar]
  16. SAITO H., MIURA K. I. PREPARATION OF TRANSFORMING DEOXYRIBONUCLEIC ACID BY PHENOL TREATMENT. Biochim Biophys Acta. 1963 Aug 20;72:619–629. [PubMed] [Google Scholar]
  17. Spizizen J. TRANSFORMATION OF BIOCHEMICALLY DEFICIENT STRAINS OF BACILLUS SUBTILIS BY DEOXYRIBONUCLEATE. Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1072–1078. doi: 10.1073/pnas.44.10.1072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Stuy J. H. Fate of transforming DNA in the Haemophilus influenzae transformation system. J Mol Biol. 1965 Sep;13(2):554–570. doi: 10.1016/s0022-2836(65)80117-6. [DOI] [PubMed] [Google Scholar]
  19. TOMIZAWA J. I., ANRAKU N. MOLECULAR MECHANISMS OF GENETIC RECOMBINATION IN BACTERIOPHAGE. II. JOINING OF PARENTAL DNA MOLECULES OF PHAGE T4. J Mol Biol. 1964 Apr;8:516–540. doi: 10.1016/s0022-2836(64)80009-7. [DOI] [PubMed] [Google Scholar]
  20. VENEMA G., PRITCHARD R. H., VENEMA-SCHROEDER T. FATE OF TRANSFORMING DEOXYRIBONUCLEIC ACID IN BACILLUS SUBTILIS. J Bacteriol. 1965 May;89:1250–1255. doi: 10.1128/jb.89.5.1250-1255.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. VOLL M. J., GOODGAL S. H. Recombination during transformation in Hemophilus influenzae. Proc Natl Acad Sci U S A. 1961 Apr 15;47:505–512. doi: 10.1073/pnas.47.4.505. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES