Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1964 May;87(5):1027–1033. doi: 10.1128/jb.87.5.1027-1033.1964

CONTROL OF ASPARTATE TRANSCARBAMYLASE ACTIVITY IN TYPE 5 ADENOVIRUS-INFECTED HELA CELLS

Richard A Consigli a,1, Harold S Ginsberg a
PMCID: PMC277141  PMID: 5874531

Abstract

Consigli, Richard A. (University of Pennsylvania, Philadelphia), and Harold S. Ginsberg. Control of aspartate transcarbamylase activity in type 5 adenovirus-infected HeLa cells. J. Bacteriol. 87:1027–1033. 1964.—Type 5 adenovirus infection induces increased aspartate transcarbamylase (ATCase) activity during the period of magnified nucleic acid biosynthesis. Increased activity can be prevented by addition of pyrimidines to the culture medium. ATCase in HeLa cells is regulated by feedback inhibition, and purified enzyme can be inhibited in vitro by cytidine triphosphate (CTP). The enzyme from infected cells has a pH optimum, maximal velocity, and Km for aspartate distinctly different from ATCase from control cells. However, heating of ATCase from uninfected cells converts the enzyme so that its characteristics are identical with enzyme from infected cells. Conversely, addition of CTP to ATCase from infected cells changes the characteristics of the enzyme so that they are the same as those of enzyme from uninfected cells. The evidence presented suggests that increased nucleic acid biosynthesis in infected cells initiates a release from feedback inhibition and increases ATCase activity by reducing the concentration of pyrimidines and purines in the acid-soluble pool.

Full text

PDF
1027

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Consigli R. A., Ginsberg H. S. Activity of aspartate transcarbamylase in uninfected and type 5 adenovirus-infected HeLa cells. J Bacteriol. 1964 May;87(5):1034–1043. doi: 10.1128/jb.87.5.1034-1043.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. FLANAGAN J. F., GINSBERG H. S. Synthesis of virus-specific polymers in adenovirus-infected cells; effect of 5-fluorodeoxyuridine. J Exp Med. 1962 Aug 1;116:141–157. doi: 10.1084/jem.116.2.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. GERHART J. C., PARDEE A. B. The enzymology of control by feedback inhibition. J Biol Chem. 1962 Mar;237:891–896. [PubMed] [Google Scholar]
  4. GINSBERG H. S., DIXON M. K. Deoxyribonucleic acid (DNA) and protein alterations in HeLa cells infected with type 4 adenovirus. J Exp Med. 1959 Apr 1;109(4):407–422. doi: 10.1084/jem.109.4.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. GINSBERG H. S., DIXON M. K. Nucleuc acid synthesis in types 4 and 5 adenovirus-infected HeLa cells. J Exp Med. 1961 Feb 1;113:283–299. doi: 10.1084/jem.113.2.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. GORINI L., MAAS W. K. The potential for the formation of a biosynthetic enzyme in Escherichia coli. Biochim Biophys Acta. 1957 Jul;25(1):208–209. doi: 10.1016/0006-3002(57)90450-x. [DOI] [PubMed] [Google Scholar]
  7. GOTS J. S., GOLLUB E. G. Purine analogs as feedback inhibitors. Proc Soc Exp Biol Med. 1959 Aug-Sep;101:641–643. doi: 10.3181/00379727-101-25045. [DOI] [PubMed] [Google Scholar]
  8. GOTS J. S. Purine metabolism in bacteria. V. Feed-back inhibition. J Biol Chem. 1957 Sep;228(1):57–66. [PubMed] [Google Scholar]
  9. HENDERSON J. F. Feedback inhibition of purine biosynthesis in ascites tumor cells. J Biol Chem. 1962 Aug;237:2631–2635. [PubMed] [Google Scholar]
  10. LEPAGE G. A., JONES M. Purinethiols as feedback inhibitors of purine synthesis in ascites tumor cells. Cancer Res. 1961 Jun;21:642–649. [PubMed] [Google Scholar]
  11. LOVE S. H., GOTS J. S. Purine metabolism in bacteria. III. Accumulation of a new pentose-containing arylamine by a purine-requiring mutant of Escherichia coli. J Biol Chem. 1955 Feb;212(2):647–654. [PubMed] [Google Scholar]
  12. MAGASANIK B. Nutrition of bacteria and fungi. Annu Rev Microbiol. 1957;11:221–252. doi: 10.1146/annurev.mi.11.100157.001253. [DOI] [PubMed] [Google Scholar]
  13. PARDEE A. B., YATES R. A. Control of pyrimidine biosynthesis in Escherichia coli by a feed-back mechanism. J Biol Chem. 1956 Aug;221(2):757–770. [PubMed] [Google Scholar]
  14. PARDEE A. B., YATES R. A. Pyrimidine biosynthesis in Escherichia coli. J Biol Chem. 1956 Aug;221(2):743–756. [PubMed] [Google Scholar]
  15. SARTORELLI A. C., LEPAGE G. A. Metabolic effects of 6-thioguanine. II. Biosynthesis of nucleic acid purines in vivo and in vitro. Cancer Res. 1958 Dec;18(11):1329–1335. [PubMed] [Google Scholar]
  16. SCHIMKE R. T. Repression of enzymes of arginine biosynthesis in mammalian tissue culture. Biochim Biophys Acta. 1962 Aug 27;62:599–601. doi: 10.1016/0006-3002(62)90250-0. [DOI] [PubMed] [Google Scholar]
  17. UMBARGER H. E. Evidence for a negative-feedback mechanism in the biosynthesis of isoleucine. Science. 1956 May 11;123(3202):848–848. doi: 10.1126/science.123.3202.848. [DOI] [PubMed] [Google Scholar]
  18. WYNGAARDEN J. B., ASHTON D. M. Feedback control of purine biosynthesis by purine ribonucleotides. Nature. 1959 Mar 14;183(4663):747–748. doi: 10.1038/183747a0. [DOI] [PubMed] [Google Scholar]
  19. WYNGAARDEN J. B., SILBERMAN H. R., SADLER J. H. Feedback mechanisms influencing purine ribotide synthesis. Ann N Y Acad Sci. 1958 Oct 13;75(1):45–60. doi: 10.1111/j.1749-6632.1958.tb36850.x. [DOI] [PubMed] [Google Scholar]
  20. YATES R. A., PARDEE A. B. Control by uracil of formation of enzymes required for orotate synthesis. J Biol Chem. 1957 Aug;227(2):677–692. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES