Abstract
Huston, Charles K. (Fort Detrick, Frederick, Md.), Phillip W. Albro, and Gerald B. Grindey. Lipids of Sarcina lutea. III. Composition of the complex lipids. J. Bacteriol. 89:768–775. 1965.—The complex lipids from a strain of Sarcina lutea were isolated and separated into fractions on diethylaminoethyl cellulose acetate and silicic acid columns. These fractions were monitored in several thin-layer chromatography systems. The various lipid types were characterized by their behavior in thin-layer systems and by an analysis of their hydrolysis products. The fatty acid composition of the column fractions was determined by gas-liquid chromatography. A number of components (13) were separated by thin-layer chromatography and characterized. The major components were polyglycerol phosphatide (17.0%), lipoamino acids (15.1%), phosphatidyl glycerol (13.8%), and an incompletely characterized substance (15.0%). Minor constituents included phosphatidyl inositol (5.5%), phosphatidic acid (4.2%), phosphatidyl serine (2.0%), and phosphatidyl choline (1.0%). No phosphatidyl ethanolamine was observed.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- AMENTA J. S. A RAPID CHEMICAL METHOD FOR QUANTIFICATION OF LIPIDS SEPARATED BY THIN-LAYER CHROMATOGRAPHY. J Lipid Res. 1964 Apr;5:270–272. [PubMed] [Google Scholar]
- Allen R. J. The estimation of phosphorus. Biochem J. 1940 Jun;34(6):858–865. doi: 10.1042/bj0340858. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BENSON A. A., MARUO B. Piant phospholipids. I. Identification of the phosphatidyl glycerols. Biochim Biophys Acta. 1958 Jan;27(1):189–195. doi: 10.1016/0006-3002(58)90308-1. [DOI] [PubMed] [Google Scholar]
- BENTLEY R., SWEELEY C. C., MAKITA M., WELLS W. W. Gas chromatography of sugars and other polyhydroxy compounds. Biochem Biophys Res Commun. 1963 Apr 2;11:14–18. doi: 10.1016/0006-291x(63)90019-6. [DOI] [PubMed] [Google Scholar]
- DEKONING A. J. IDENTIFICATION OF AN ARTIFACT IN THE HYDROLYSIS OF CHOLINE- CONTAINING PHOSPHOLIPIDS. J Chromatogr. 1963 Oct;12:264–266. doi: 10.1016/s0021-9673(01)83684-0. [DOI] [PubMed] [Google Scholar]
- DITTMER J. C., LESTER R. L. A SIMPLE, SPECIFIC SPRAY FOR THE DETECTION OF PHOSPHOLIPIDS ON THIN-LAYER CHROMATOGRAMS. J Lipid Res. 1964 Jan;5:126–127. [PubMed] [Google Scholar]
- FLEISCHER S., BRIERLEY G., KLOUWEN H., SLAUTTERBACK D. B. Studies of the electron transfer system. 47. The role of phospholipids in electron transfer. J Biol Chem. 1962 Oct;237:3264–3272. [PubMed] [Google Scholar]
- GABY W. L., WOLIN H. L., ZAJAC I. The role of phospholipides in the uptake of amino acids by Ehrlich ascites carcinoma cells. Cancer Res. 1960 Nov;20:1508–1513. [PubMed] [Google Scholar]
- GOLDFINE H. The characterization and biosynthesis of an N-methylethanolamine phospholipid from Clostridium butyricum. Biochim Biophys Acta. 1962 May 21;59:504–506. doi: 10.1016/0006-3002(62)90212-3. [DOI] [PubMed] [Google Scholar]
- HUNTER G. D., GODSON G. N. Later stages of protein synthesis and the role of phospholipids in the process. Nature. 1961 Jan 14;189:140–141. doi: 10.1038/189140a0. [DOI] [PubMed] [Google Scholar]
- HUSTON C. K., ALBRO P. W. LIPIDS OF SARCINA LUTEA. I. FATTY ACID COMPOSITION OF THE EXTRACTABLE LIPIDS. J Bacteriol. 1964 Aug;88:425–432. doi: 10.1128/jb.88.2.425-432.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- IKAWA M. NATURE OF THE LIPIDS OF SOME LACTIC ACID BACTERIA. J Bacteriol. 1963 Apr;85:772–781. doi: 10.1128/jb.85.4.772-781.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KATES M., ADAMS G. A., MARTIN S. M. LIPIDS OF SERRATIA MARCESCENS. Can J Biochem. 1964 Apr;42:461–479. doi: 10.1139/o64-054. [DOI] [PubMed] [Google Scholar]
- KENTEN R. H. The partial purification and properties of a thiaminase from bracken. Biochem J. 1957 Sep;67(1):25–33. doi: 10.1042/bj0670025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KISHIMOTO Y., RADIN N. S. MICRODETERMINATION, ISOLATION, AND GAS-LIQUID CHROMATOGRAPHY OF 2-HYDROXY FATTY ACIDS. J Lipid Res. 1963 Apr;4:130–138. [PubMed] [Google Scholar]
- LEA C. H., RHODES D. N. The ninhydrin reaction of unhydrolysed phospholipids. Biochim Biophys Acta. 1955 Jul;17(3):416–423. doi: 10.1016/0006-3002(55)90391-7. [DOI] [PubMed] [Google Scholar]
- LEPAGE M. THE SEPARATION AND IDENTIFICATION OF PLANT PHOSPHOLIPIDS AND GLYCOLIPIDS BY TWO-DIMENSIONAL THIN-LAYER CHROMATOGRAPHY. J Chromatogr. 1964 Jan;13:99–103. doi: 10.1016/s0021-9673(01)95078-2. [DOI] [PubMed] [Google Scholar]
- MATCHES J. R., WALKER H. W., AYRES J. C. PHOSPHOLIPIDS IN VEGETATIVE CELLS AND SPORES OF BACILLUS POLYMYXA. J Bacteriol. 1964 Jan;87:16–23. doi: 10.1128/jb.87.1.16-23.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WELLS M. A., DITTMER J. C. THE USE OF SEPHADEX FOR THE REMOVAL OF NONLIPID CONTAMINANTS FROM LIPID EXTRACTS. Biochemistry. 1963 Nov-Dec;2:1259–1263. doi: 10.1021/bi00906a015. [DOI] [PubMed] [Google Scholar]