Abstract
Grula, E. A. (Oklahoma State University, Stillwater) and Mary M. Grula. Cell division in a species of Eriwinia. V. Effect of metabolic inhibitors on terminal division and composition of a “division” medium. J. Bacteriol. 84:492–499. 1962.—Terminal division in Erwinia spp. involves a triggering action and subsequent septum synthesis. It is a metabolic process requiring organic nitrogen and carbon and energy. The process, when triggered by pantoic acid or pantoyl lactone, is inhibited strongly by 2,4-dinitrophenol, hydroxylamine, mitomycin C, and Hg ion and to a lesser degree by cyanide, azide, 5-fluorouracil, and diisopropylfluorophosphate. Ethylenediaminetetraacetic acid completely inhibits division only when calcium ion is the triggering agent. Heating of the cells at 43 C for 10 to 20 min also completely inhibits division. Hydroxylamine, iodoacetate, and mitomycin C cause extensive lysis of growing cells. No evidence has been obtained to demonstrate the need for protein or normal ribonucleic acid synthesis in terminal division. Requirement for intact deoxyribonucleic acid (DNA) or DNA synthesis is questionable; —SH groups are not directly involved. Once triggering has occurred, septum formation appears to require synthesis of at least cell-wall mucopeptide. A “division” medium is reported and discussed.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ARCHIBALD A. R., ARMSTRONG J. J., BADDILEY J., HAY J. B. Teichoic acids and the structure of bacterial walls. Nature. 1961 Aug 5;191:570–572. doi: 10.1038/191570a0. [DOI] [PubMed] [Google Scholar]
- BENTLEY R., SLECHTA L. Oxidation of mono- and disaccharides to aldonic acids by Pseudomonas species. J Bacteriol. 1960 Mar;79:346–355. doi: 10.1128/jb.79.3.346-355.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CAIN R. B. The metabolism of protocatechuic acid by a vibrio. Biochem J. 1961 May;79:298–312. doi: 10.1042/bj0790298. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen S. S., Flaks J. G., Barner H. D., Loeb M. R., Lichtenstein J. THE MODE OF ACTION OF 5-FLUOROURACIL AND ITS DERIVATIVES. Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1004–1012. doi: 10.1073/pnas.44.10.1004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DEIBEL R. H., DOWNING M., NIVEN C. F., Jr, SCHWEIGERT B. S. Filament formation by Lactobacillus leichmannii when desoxyribosides replace vitamin B12 in the growth medium. J Bacteriol. 1956 Feb;71(2):255–256. doi: 10.1128/jb.71.2.255-256.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
- EZEKIEL D. H. Increase in ribonucleic acid in the bacterial chromatin body during chloramphenicol treatment. J Bacteriol. 1961 Feb;81:319–326. doi: 10.1128/jb.81.2.319-326.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FALCONE G., NICKERSON W. J. Identification of protein disulfide reductase as a cellular division enzyme in yeasts. Science. 1956 Oct 19;124(3225):722–723. doi: 10.1126/science.124.3225.722. [DOI] [PubMed] [Google Scholar]
- GRULA E. A. Cell division in a species of Erwinia. I. Inhibition of division by D-amino acids. J Bacteriol. 1960 Sep;80:375–385. doi: 10.1128/jb.80.3.375-385.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GRULA E. A., GRULA M. M. Cell division in a species of Erwinia III. Reversal of inhibition of cell division caused by D-amino acids, penicillin, and ultraviolet light. J Bacteriol. 1962 May;83:981–988. doi: 10.1128/jb.83.5.981-988.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GRULA M. M., GRULA E. A. Cell division in a species of Erwinia IV. Metabolic blocks in panothenate biosynthesis and their relationship to inhibition of cell division. J Bacteriol. 1962 May;83:989–997. doi: 10.1128/jb.83.5.989-997.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HANCOCK R., PARK J. T. Cell-wall synthesis by Staphylococcus aureus in the presence of chloramphenicol. Nature. 1958 Apr 12;181(4615):1050–1052. doi: 10.1038/1811050a0. [DOI] [PubMed] [Google Scholar]
- KEMPNER E. S. The selection and utilization of metabolic analogs for nucleic acid synthesis. Biochim Biophys Acta. 1961 Oct 14;53:111–122. doi: 10.1016/0006-3002(61)90798-3. [DOI] [PubMed] [Google Scholar]
- KERSTEN H., RAUEN H. M. Degradation of deoxyribonucleic acid in Escherichia coli cells treated with mitomycin C. Nature. 1961 Jun 24;190:1195–1196. doi: 10.1038/1901195a0. [DOI] [PubMed] [Google Scholar]
- KEYNAN A., HALVORSON H. O. Calcium dipicolinic acid-induced germination of Bacillus cereus spores. J Bacteriol. 1962 Jan;83:100–105. doi: 10.1128/jb.83.1.100-105.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LITTMAN M. L., MIWATANI T. Reversal of toxicity of 5-fluorouracil and 5-fluorodeoxyuridine for Candida albicans by pyridoxine and pyridoxamine. Nature. 1961 Dec 23;192:1155–1159. doi: 10.1038/1921155a0. [DOI] [PubMed] [Google Scholar]
- LOMINSKI I., CAMERON J., WYLLIE G. Chaining and unchaining Streptococcus faecalis; a hypothesis of the mechanism of bacterial cell separation. Nature. 1958 May 24;181(4621):1477–1477. doi: 10.1038/1811477a0. [DOI] [PubMed] [Google Scholar]
- NAKATA Y., NAKATA K., SAKAMOTO Y. On the action mechanism of mitomycin C. Biochem Biophys Res Commun. 1961 Dec 20;6:339–343. doi: 10.1016/0006-291x(61)90141-3. [DOI] [PubMed] [Google Scholar]
- NICKERSON W. J., WEBB M. Effect of folic acid analogues on growth and cell division of nonexacting microorganisms. J Bacteriol. 1956 Feb;71(2):129–139. doi: 10.1128/jb.71.2.129-139.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
- REICH E., FRANKLIN R. M. Effect of mitomycin C on the growth of some animal viruses. Proc Natl Acad Sci U S A. 1961 Aug;47:1212–1217. doi: 10.1073/pnas.47.8.1212. [DOI] [PMC free article] [PubMed] [Google Scholar]
- REICH E., SHATKIN A. J., TATUM E. L. Bacteriocidal action of mitomycin C. Biochim Biophys Acta. 1960 Dec 18;45:608–610. doi: 10.1016/0006-3002(60)91504-3. [DOI] [PubMed] [Google Scholar]
- REPASKE R. Lysis of gram-negative bacteria by lysozyme. Biochim Biophys Acta. 1956 Oct;22(1):189–191. doi: 10.1016/0006-3002(56)90240-2. [DOI] [PubMed] [Google Scholar]
- REYNOLDS P. E. Studies on the mode of action of vancomycin. Biochim Biophys Acta. 1961 Sep 16;52:403–405. doi: 10.1016/0006-3002(61)90698-9. [DOI] [PubMed] [Google Scholar]
- ROGERS H. J., PERKINS H. R. 5-Fluorouracil and mucopeptide biosynthesis by Staphylococcus aureus. Biochem J. 1960 Dec;77:448–459. doi: 10.1042/bj0770448. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROODYN D. B., MANDEL H. G. The differential effect of 8-azaguanine on cell wall and protoplasmic protein synthesis in Bacillus cereus. J Biol Chem. 1960 Jul;235:2036–2044. [PubMed] [Google Scholar]
- VISWANATHA T., LAWSON W. B. The action of N-bromosuc-cinimide on chymotrypsin. Arch Biochem Biophys. 1961 Apr;93:128–134. doi: 10.1016/0003-9861(61)90324-1. [DOI] [PubMed] [Google Scholar]
- WEBB M., NICKERSON W. J. Differential reversal of inhibitory effects of folic acid analogues on growth, division, and deoxyribonucleic acid synthesis of microorganisms. J Bacteriol. 1956 Feb;71(2):140–148. doi: 10.1128/jb.71.2.140-148.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WEIDEL W., FRANK H., MARTIN H. H. The rigid layer of the cell wall of Escherichia coli strain B. J Gen Microbiol. 1960 Feb;22:158–166. doi: 10.1099/00221287-22-1-158. [DOI] [PubMed] [Google Scholar]
- WEIMBERG R. Pentose oxidation by Pseudomonas fragi. J Biol Chem. 1961 Mar;236:629–635. [PubMed] [Google Scholar]
