Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1962 Oct;84(4):778–783. doi: 10.1128/jb.84.4.778-783.1962

ENZYMES IN CANDIDA ALBICANS II.

Tricarboxylic Acid Cycle and Related Enzymes

G Ramananda Rao a, M Sirsi a, T Ramakrishnan a,1
PMCID: PMC277958  PMID: 13973046

Abstract

Rao, G. Ramananda (Indian Institute of Science, Bangalore, India), M. Sirsi, and T. Ramakrishnan. Enzymes in Candida albicans. II. Tricarboxylic acid cycle and related enzymes. J. Bacteriol. 84:778–783. 1962.—Evidence is presented to show the operation of the tricarboxylic acid cycle in Candida albicans, by studies with whole cells, cell-free preparations, and by the demonstration of most of the enzymes involved in the cycle. Cell-free extracts contained the following enzymes: condensing enzyme; aconitase; isocitric, α-ketoglutaric, succinic, and malic dehydrogenases; malic enzyme; fumarase; reduced diphosphopyridine nucleotide (DPNH) oxidase; DPNH-cytochrome c reductase; reduced triphosphopyridine nucleotide (TPNH) cytochrome c reductase; and diaphorase. Pyruvic dehydrogenase, TPNH oxidase, and transhydrogenase activities could not be detected under the test conditions.

Full text

PDF
783

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARNETT J. A., KORNBERG H. L. The utilization by yeasts of acids of the tricarboxylic acid cycle. J Gen Microbiol. 1960 Aug;23:65–82. doi: 10.1099/00221287-23-1-65. [DOI] [PubMed] [Google Scholar]
  2. BARRON E. S. G., ARDAO M. I., HEARON M. Regulatory mechanisms of cellular respiration. III. Enzyme distribution in the cell. Its influence on the metabolism of pyruvic acid by bakers' yeast. J Gen Physiol. 1950 Nov;34(2):211–224. doi: 10.1085/jgp.34.2.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CHELDELIN V. H., KAWASAKI E. H., KING T. E. Tricarboxylic acid cycle activity in Acetobacter pasteurianum. J Bacteriol. 1956 Sep;72(3):418–421. doi: 10.1128/jb.72.3.418-421.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CLARKE P. H., MEADOW P. M. Evidence for the occurrence of Permeases for tricarboxylic acid cycle intermediates in Pseudomonas aeruginosa. J Gen Microbiol. 1959 Feb;20(1):144–155. doi: 10.1099/00221287-20-1-144. [DOI] [PubMed] [Google Scholar]
  5. COHEN G. N., MONOD J. Bacterial permeases. Bacteriol Rev. 1957 Sep;21(3):169–194. doi: 10.1128/br.21.3.169-194.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. COLOWICK S. P., KAPLAN N. O., NEUFELD E. F., CIOTTI M. M. Pyridine nucleotide transhydrogenase. I. Indirect evidence for the reaction and purification of the enzyme. J Biol Chem. 1952 Mar;195(1):95–105. [PubMed] [Google Scholar]
  7. DOLIN M. I. Oxidation of reduced diphosphopyridine nucleotide by Clostridium perfringens. I. Relation of peroxide to the overall reaction. J Bacteriol. 1959 Apr;77(4):383–392. doi: 10.1128/jb.77.4.383-392.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. GOLDMAN D. S. Enzyme systems in the mycobacteria. I. The isocitric dehydrogenase. J Bacteriol. 1956 Jun;71(6):732–736. doi: 10.1128/jb.71.6.732-736.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. GOLDMAN D. S. Enzyme systems in the mycobacteria. II. The malic dehydrogenase. J Bacteriol. 1956 Sep;72(3):401–405. doi: 10.1128/jb.72.3.401-405.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. HENIS Y., GROSSOWICZ N. Studies on the mode of action of antifungal heptaene antibiotics. J Gen Microbiol. 1960 Oct;23:345–355. doi: 10.1099/00221287-23-2-345. [DOI] [PubMed] [Google Scholar]
  11. HOCHSTER R. M., KATZNELSON H. On the mechanism of glucose-beta-phosphate oxidation in cell-free extracts of Xanthomonas phaseoli (XP8). Can J Biochem Physiol. 1958 Jul;36(7):669–689. [PubMed] [Google Scholar]
  12. KAPLAN N. O., COLOWICK S. P., NEUFELD E. F., CIOTTI M. M. Pyridine nucleotide transhydrogenase. IV. Effect of adenylic acid a on the bacterial transhydrogenases. J Biol Chem. 1953 Nov;205(1):17–29. [PubMed] [Google Scholar]
  13. KORNBERG H. L., MADSEN N. B. The metabolism of C2 compounds in microorganisms. 3. Synthesis of malate from acetate via the glyoxylate cycle. Biochem J. 1958 Mar;68(3):549–557. doi: 10.1042/bj0680549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. KUSUNOSE E., KUSUNOSE M., NAGAI S., YAMAMURA Y. Succinic dehydrogenase in the particulate fraction of Mycobacterium avium. J Bacteriol. 1956 Dec;72(6):754–761. doi: 10.1128/jb.72.6.754-761.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. MAITRA P. K., ROY S. C. Tricarboxylic acid-cycle activity in Streptomyces olivaceus. Biochem J. 1961 Jun;79:446–456. doi: 10.1042/bj0790446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. MUDD J. B., BURRIS R. H. Inhibition of peroxidase-catalyzed oxidations. J Biol Chem. 1959 Dec;234:3281–3285. [PubMed] [Google Scholar]
  17. MURTHY P. S., SIRSI M., RAMAKRISHNAN T. Tricarboxylic acid cycle and related enzymes in cell-free extracts of Mycobacterium tuberculosis H37Rv. Biochem J. 1962 Aug;84:263–269. doi: 10.1042/bj0840263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Martin D. S., Jones C. P. Further Studies on the Practical Classification of the Monilias. J Bacteriol. 1940 May;39(5):609–630. doi: 10.1128/jb.39.5.609-630.1940. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. OCHOA S., STERN J. R., SCHNEIDER M. C. Enzymatic synthesis of citric acid. II. Crystalline condensing enzyme. J Biol Chem. 1951 Dec;193(2):691–702. [PubMed] [Google Scholar]
  20. RACKER E. Spectrophotometric measurements of the enzymatic formation of fumaric and cis-aconitic acids. Biochim Biophys Acta. 1950 Jan;4(1-3):211–214. doi: 10.1016/0006-3002(50)90026-6. [DOI] [PubMed] [Google Scholar]
  21. RAO G. R., RAMAKRISHNAN T., SIRSI M. Enzymes in Candida albicans. I. Pathways of glucose dissimilation. J Bacteriol. 1960 Nov;80:654–658. doi: 10.1128/jb.80.5.654-658.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. SLATER E. C., BORNER W. D., Jr The effect of fluoride on the succinic oxidase system. Biochem J. 1952 Oct;52(2):185–196. doi: 10.1042/bj0520185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. THJØTTA T., TORHEIM B. J. Studies on the fermentation of sugars in the candida-group. Acta Pathol Microbiol Scand. 1955;36(3):237–249. doi: 10.1111/j.1699-0463.1955.tb04594.x. [DOI] [PubMed] [Google Scholar]
  24. WARD J. M., NICKERSON W. J. Respiratory metabolism of normal and divisionless strains of Candida albicans. J Gen Physiol. 1958 Mar 20;41(4):703–724. doi: 10.1085/jgp.41.4.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. YOUMANS A. S., MILLMAN I., YOUMANS G. P. The oxidation of compounds related to the tricarboxylic acid cycle by whole cells and enzyme preparations of Mycobacterium tuberculosis var. hominis. J Bacteriol. 1956 May;71(5):565–570. doi: 10.1128/jb.71.5.565-570.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES