Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1963 Apr;85(4):895–900. doi: 10.1128/jb.85.4.895-900.1963

IDENTIFICATION OF THE STRUCTURAL GENE FOR β-GLUCOSIDASE IN SACCHAROMYCES LACTIS

Alberta Herman a,1, Harlyn Halvorson a
PMCID: PMC278242  PMID: 14044960

Abstract

Herman, Alberta (University of Wisconsin, Madison) and Harlyn Halvorson. Identification of the structural gene for β-glucosidase in Saccharomyces lactis. J. Bacteriol. 85:895–900. 1963.—Three allelic forms (Bh, m, l) of the structural gene for β-glucosidase have been identified in the yeast Saccharomyces lactis. Evidence that these are structural gene alleles includes the independent expression of the alleles in homozygous and heterozygous diploids and differences in the specificity and in the physical properties of the enzyme produced in response to the various allelic mutations. Two factors, one controlling production of the pulcherrimin-like pigment, the other β-galactosidase activity, are linked to the B locus. The β-glucosidase in these strains hydrolyzes the chromogenic substrate, p-nitrophenyl-β-d-glucoside, arbutin, salicin, and esculin. Cellobiose, on the other hand, is hydrolyzed by another enzyme.

Full text

PDF
900

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARNETT J. A., INGRAM M., SWAIN T. The use of beta-glucosides in classifying yeasts. J Gen Microbiol. 1956 Dec;15(3):529–555. doi: 10.1099/00221287-15-3-529. [DOI] [PubMed] [Google Scholar]
  2. DUERKSEN J. D., HALVORSON H. The specificity of induction of beta-glucosidase in Saccharomyces cerevisiae. Biochim Biophys Acta. 1959 Nov;36:47–55. doi: 10.1016/0006-3002(59)90068-x. [DOI] [PubMed] [Google Scholar]
  3. HERMAN A., HALVORSON H. GENETIC CONTROL OF BETA-GLUCOSIDASE SYNTHESIS IN SACCHAROMYCES LACTIS. J Bacteriol. 1963 Apr;85:901–910. doi: 10.1128/jb.85.4.901-910.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. HU A. S., EPSTEIN R., HALVORSON H. O., BOCK R. M. Yeast beta-glucosidase: comparison of the physical-chemical properties of purified constitutive and inducible enzyme. Arch Biochem Biophys. 1960 Dec;91:210–218. doi: 10.1016/0003-9861(60)90492-6. [DOI] [PubMed] [Google Scholar]
  5. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  6. Lindegren C. C., Lindegren G. A New Method for Hybridizing Yeast. Proc Natl Acad Sci U S A. 1943 Oct 15;29(10):306–308. doi: 10.1073/pnas.29.10.306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. MACQUILLAN A. M., HALVORSON H. O. Metabolic control of beta-glucosidase synthesis in yeast. J Bacteriol. 1962 Jul;84:23–30. doi: 10.1128/jb.84.1.23-30.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. WICKERHAM L. J., BURTON K. A. Hybridization studies involving Saccharomyces lactis and Zygosaccharomyces ashbyi. J Bacteriol. 1956 Mar;71(3):290–295. doi: 10.1128/jb.71.3.290-295.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES