Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1963 Jul;86(1):30–37. doi: 10.1128/jb.86.1.30-37.1963

ENZYME SYSTEMS IN THE MYCOBACTERIA XV.

Initial Steps in the Metabolism of Glycerol1

Dexter S Goldman a
PMCID: PMC278370  PMID: 14051819

Abstract

Goldman, Dexter S. (Veterans Administration Hospital, Madison, Wis.). Enzyme systems in the mycobacteria. XV. Initial steps in the metabolism of glycerol. J. Bacteriol. 86:30–37. 1963.—In cell-free extracts of strain H37Ra of Mycobacterium tuberculosis, glycerol is metabolized first by oxidation to dihydroxyacetone. A kinase was partially purified and shown to phosphorylate dihydroxyacetone; in the presence of the glyceraldehyde-3-phosphate dehydrogenase system, the product of the kinase reaction was further oxidized to 3-phosphoglycerate. The role of α-glycerol phosphate in the metabolism of strain H37Ra is discussed.

Full text

PDF
31

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BASTARRACHEA F., ANDERSON D. G., GOLDMAN D. S. Enzyme systems in the Mycobacteria. XI. Evidence for a functional glycolytic system. J Bacteriol. 1961 Jul;82:94–100. doi: 10.1128/jb.82.1.94-100.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BECK W. S. Determination of triose phosphates and proposed modifications in the aldolase method of Sibley and Lehninger. J Biol Chem. 1955 Feb;212(2):847–857. [PubMed] [Google Scholar]
  3. BUBLITZ C., KENNEDY E. P. Synthesis of phosphatides in isolated mitochondria. III. The enzymatic phosphorylation of glycerol. J Biol Chem. 1954 Dec;211(2):951–961. [PubMed] [Google Scholar]
  4. BURGER M. M., GLASER L. The enzymic synthesis of polyglycerophosphate. Biochim Biophys Acta. 1962 Nov 5;64:575–577. doi: 10.1016/0006-3002(62)90324-4. [DOI] [PubMed] [Google Scholar]
  5. CHIANG C., KNIGHT S. G. D-Xylose metabolism by cell-free extracts of Penicillium chrysogenum. Biochim Biophys Acta. 1959 Oct;35:454–463. doi: 10.1016/0006-3002(59)90395-6. [DOI] [PubMed] [Google Scholar]
  6. EDSON N. L. The intermediary metabolism of the mycobacteria. Bacteriol Rev. 1951 Sep;15(3):147–182. doi: 10.1128/br.15.3.147-182.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HAUGE J. G., KING T. E., CHELDELIN V. H. Alternate conversions of glycerol to dihydroxyacetone in Acetobacter sub-oxydans. J Biol Chem. 1955 May;214(1):1–9. [PubMed] [Google Scholar]
  8. HAUGE J. G., KING T. E., CHELDELIN V. H. Oxidation of dihydroxyacetone via the pentose cycle in Acetobacter sub-oxydans. J Biol Chem. 1955 May;214(1):11–26. [PubMed] [Google Scholar]
  9. HUNTER G. J. The oxidation of glycerol by Mycobacteria. Biochem J. 1953 Sep;55(2):320–328. doi: 10.1042/bj0550320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. PIERARD A., GOLDMAN D. S. Enzyme systems in the mycobacteria. 14. Fatty acid synthesis in cell-free extracts of Mycobacterium tuberculosis. Arch Biochem Biophys. 1963 Jan;100:56–65. doi: 10.1016/0003-9861(63)90034-1. [DOI] [PubMed] [Google Scholar]
  11. RAO G. R., RAMAKRISHNAN T., SIRSI M. Enzymes in Candida albicans. I. Pathways of glucose dissimilation. J Bacteriol. 1960 Nov;80:654–658. doi: 10.1128/jb.80.5.654-658.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. RUNECKLES V. C., KROTKOV G. The separation of phosphate esters and other metabolites by ionophoresis and chromatography on paper. Arch Biochem Biophys. 1957 Aug;70(2):442–453. doi: 10.1016/0003-9861(57)90132-7. [DOI] [PubMed] [Google Scholar]
  13. WADE H. E., MORGAN D. M. Detection of phosphate esters on paper chromatograms. Nature. 1953 Mar 21;171(4351):529–530. doi: 10.1038/171529a0. [DOI] [PubMed] [Google Scholar]
  14. WINDER F., DENNENY J. M. Utilization of metaphosphate for phosphorylation by cell-free extracts of Mycobacterium smegmatis. Nature. 1955 Apr 9;175(4458):636–636. doi: 10.1038/175636a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES