Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1961 Jul;82(1):142–148. doi: 10.1128/jb.82.1.142-148.1961

THIAMINE AND NICOTINIC ACID: ANAEROBIC GROWTH FACTORS FOR MUCOR ROUXII

S Bartnicki-Garcia a,1, Walter J Nickerson a
PMCID: PMC279127  PMID: 16561911

Abstract

Bartnicki-Garcia, S. (Rutgers, the State University, New Brunswick, N. J.), and Walter J. Nickerson. Thiamine and nicotinic acid: Anaerobic growth factors for Mucor rouxii. J. Bacteriol. 82:142–148. 1961.—Mucor rouxii requires preformed thiamine and nicotinic acid for anaerobic growth. Such requirements are not manifested during aerobic incubation. Aerobically, the fungus was shown to be able to synthesize both vitamins.

The yeastlike form and the filamentous form of anaerobically grown M. rouxii exhibit the same vitamin requirements.

Thiamine can be substituted by its thiazole moiety. Under certain conditions, nicotinic acid was partly substituted by tryptophan, kynurenine, 3-hydroxykynurenine, and 3-hydroxyanthranilic acid.

Anaerobically. the fungus (thiamine requiring) was about ten times more susceptible to pyrithiamine antagonism than the same organism grown aerobically (thiamine independent).

Full text

PDF
146

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDREASEN A. A., STIER T. J. B. Anaerobic nutrition of Saccharomyces cerevisiae. I. Ergosterol requirement for growth in a defined medium. J Cell Physiol. 1953 Feb;41(1):23–36. doi: 10.1002/jcp.1030410103. [DOI] [PubMed] [Google Scholar]
  2. ANDREASEN A. A., STIER T. J. Anaerobic nutrition of Saccharomyces cerevisiae. II. Unsaturated fatty acid requirement for growth in a defined medium. J Cell Physiol. 1954 Jun;43(3):271–281. doi: 10.1002/jcp.1030430303. [DOI] [PubMed] [Google Scholar]
  3. BOKMAN A. H., SCHWEIGERT B. S. 3-Hydroxyanthranilic acid metabolism. IV. Spectrophotometric evidence for the formation of an intermediate. Arch Biochem Biophys. 1951 Sep;33(2):270–276. doi: 10.1016/0003-9861(51)90106-3. [DOI] [PubMed] [Google Scholar]
  4. HAYAISHI O., ROTHBERG S., MEHLER A. H., SAITO Y. Studies on oxygenases; enzymatic formation of kynurenine from tryptophan. J Biol Chem. 1957 Dec;229(2):889–896. [PubMed] [Google Scholar]
  5. Richardson G. M. The nutrition of Staphylococcus aureus. Necessity for uracil in anaerobic growth. Biochem J. 1936 Dec;30(12):2184–2190. doi: 10.1042/bj0302184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. SHIMOMURA F., OGATA J., NAKAYAMA H., HAYASHI R. Thiamine biosynthesis in bacteria. J Vitaminol (Kyoto) 1957 Jun 10;3(2):96–105. doi: 10.5925/jnsv1954.3.96. [DOI] [PubMed] [Google Scholar]
  7. SHOCKMAN G. D. The acetate requirement of Streptococcus faecalis. J Bacteriol. 1956 Jul;72(1):101–104. doi: 10.1128/jb.72.1.101-104.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. UMBREIT W. W., SMITH P. H., OGINSKY E. L. The action of streptomycin. V. The formation of citrate. J Bacteriol. 1951 May;61(5):595–604. doi: 10.1128/jb.61.5.595-604.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. WATANABE T. Transductional studies of thiamine and nicotinic acid requiring streptomycin resistant mutants of Salmonella typhimurium. J Gen Microbiol. 1960 Feb;22:102–112. doi: 10.1099/00221287-22-1-102. [DOI] [PubMed] [Google Scholar]
  10. Wood H. G., Andersen A. A., Werkman C. H. Nutrition of the Propionic Acid Bacteria. J Bacteriol. 1938 Aug;36(2):201–214. doi: 10.1128/jb.36.2.201-214.1938. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES