Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1961 Dec;82(6):960–966. doi: 10.1128/jb.82.6.960-966.1961

CHEMICAL COMPOSITION AND HEAT RESISTANCE OF SOME AEROBIC BACTERIAL SPORES1

Homer W Walker a, Jack R Matches a, John C Ayres a
PMCID: PMC279283  PMID: 14004586

Abstract

Walker, Homer W. (Iowa State University of Science and Technology, Ames), Jack R. Matches, and John C. Ayres. Chemical composition and heat resistance of some aerobic bacterial spores. J. Bacteriol. 82:960–966. 1961.—Analyses of spores of Bacillus species for nitrogen, carbohydrate, dipicolinic acid, and phosphorus showed little correlation with heat resistance. However, as the molar concentration of magnesium increased in relation to dipicolinic acid and calcium concentrations, heat resistance generally decreased. Analyses of several batches of spores indicated that this relationship between calcium, magnesium, and dipicolinic acid did not always hold true. Therefore, while these materials apparently play an important role, other factors need to be included before a full explanation of thermal stability of spores can be made.

Full text

PDF
961

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AMAHA M., ORDAL Z. J. Effect of divalent cations in the sporulation medium on the thermal death rate of Bacillus coagulans var. thermoacidurans. J Bacteriol. 1957 Nov;74(5):596–604. doi: 10.1128/jb.74.5.596-604.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BYRNE A. F., BURTON T. H., KOCH R. B. Relation of dipicolinic acid content of anaerobic bacterial endospores to their heat resistance. J Bacteriol. 1960 Jul;80:139–140. doi: 10.1128/jb.80.1.139-140.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CHURCH B. D., HALVORSON H. Dependence of the heat resistance of bacterial endospores on their dipicolinic acid content. Nature. 1959 Jan 10;183(4654):124–125. doi: 10.1038/183124a0. [DOI] [PubMed] [Google Scholar]
  4. Curran H. R., Brunstetter B. C., Myers A. T. Spectrochemical Analysis of Vegetative Cells and Spores of Bacteria. J Bacteriol. 1943 May;45(5):485–494. doi: 10.1128/jb.45.5.485-494.1943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DAVIS F. L., Jr, WILLIAMS O. B. Chromatographic analysis of the amino acid composition of bacterial spores. V. Studies on heat resistance. J Bacteriol. 1952 Nov;64(5):766–767. doi: 10.1128/jb.64.5.766-767.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Doak B. W., Lamanna C. On the Antigenic Structure of the Bacterial Spore. J Bacteriol. 1948 Mar;55(3):373–380. doi: 10.1128/jb.55.3.373-380.1948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. FITZ-JAMES P. C., ROBINOW C. F., BERGOLD G. H. Acid hydrolysis of the spores of B. cereus; a correlation of chemical and cytological findings. Biochim Biophys Acta. 1954 Jul;14(3):346–355. doi: 10.1016/0006-3002(54)90192-4. [DOI] [PubMed] [Google Scholar]
  8. FITZ-JAMES P. C. The phosphorus fractions of Bacillus cereus and Bacillus megaterium. II. A correlation of the chemical with the cytological changes occurring during spore germination. Can J Microbiol. 1955 Aug;1(7):525–548. doi: 10.1139/m55-066. [DOI] [PubMed] [Google Scholar]
  9. HARDWICK W. A., FOSTER J. W. Enzymatic changes during sporogenesis in some aerobic bacteria. J Bacteriol. 1953 Apr;65(4):355–360. doi: 10.1128/jb.65.4.355-360.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. HASHIMOTO T., BLACK S. H., GERHARDT P. Development of fine structure, thermostability, and dipicolinate during sporogenesis in a bacillus. Can J Microbiol. 1960 Apr;6:203–212. doi: 10.1139/m60-022. [DOI] [PubMed] [Google Scholar]
  11. JANSSEN F. W., LUND A. J., ANDERSON L. E. Colorimetric assay for dipicolinic acid in bacterial spores. Science. 1958 Jan 3;127(3288):26–27. doi: 10.1126/science.127.3288.26. [DOI] [PubMed] [Google Scholar]
  12. LAWRENCE N. L., HALVORSON H. O. Studies on the spores of aerobic bacteria. III. The d-amino acid content of spores and vegetative cells of Bacillus terminalis. J Bacteriol. 1954 May;67(5):585–588. doi: 10.1128/jb.67.5.585-588.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. PERRY J. J., FOSTER J. W. Studies on the biosynthesis of dipicolinic acid in spores of Bacillus cereus var. mycoides. J Bacteriol. 1955 Mar;69(3):337–346. doi: 10.1128/jb.69.3.337-346.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. POWELL J. F. Factors affecting the germination of thick suspensions of bacillus subtilis spores in L-alanine solution. J Gen Microbiol. 1950 Sep;4(3):330–338. doi: 10.1099/00221287-4-3-330. [DOI] [PubMed] [Google Scholar]
  15. POWELL J. F. Isolation of dipicolinic acid (pyridine-2:6-dicarboxylic acid) from spores of Bacillus megatherium. Biochem J. 1953 May;54(2):210–211. doi: 10.1042/bj0540210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. SLEPECKY R., FOSTER J. W. Alterations in metal content of spores of Bacillus megaterium and the effect on some spore properties. J Bacteriol. 1959 Jul;78(1):117–123. doi: 10.1128/jb.78.1.117-123.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. SOBOTKA H., LUISADA-OPPER A. V. The chemical composition of thermophilic bacilli. Arch Biochem Biophys. 1957 Jul;69:548–554. doi: 10.1016/0003-9861(57)90519-2. [DOI] [PubMed] [Google Scholar]
  18. STEWART B. T., HALVORSON H. O. Studies on the spores of aerobic bacteria. I. The occurrence of alanine racemase. J Bacteriol. 1953 Feb;65(2):160–166. doi: 10.1128/jb.65.2.160-166.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. SUGIYAMA H. Studies on factors affecting the heat resistance of spores of Clostridium botulinum. J Bacteriol. 1951 Jul;62(1):81–96. doi: 10.1128/jb.62.1.81-96.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. TINELLI R. Etude de la biochimie de la sporulation chez Bacillus megaterium. I. Composition des spores obtenues par carence des différents substrats carbonés. Ann Inst Pasteur (Paris) 1955 Feb;88(2):212–226. [PubMed] [Google Scholar]
  21. Tarr H. L. Some observations on the respiratory catalysts present in the spores and vegetative cells of certain aerobic bacilli. Biochem J. 1933;27(1):136–145. [PMC free article] [PubMed] [Google Scholar]
  22. WOESE C., MOROWITZ H. J. Kinetics of the release of dipicolinic acid from spores of Bacillus subtilis. J Bacteriol. 1958 Jul;76(1):81–83. doi: 10.1128/jb.76.1.81-83.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. YOUNG I. E. A relationship between the free amino acid pool, dipicolinic acid, calcium from resting spores of Bacillus megaterium. Can J Microbiol. 1959 Apr;5(2):197–202. doi: 10.1139/m59-024. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES