Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1988 Jan;85(1):185–188. doi: 10.1073/pnas.85.1.185

Base substitutions, frameshifts, and small deletions constitute ionizing radiation-induced point mutations in mammalian cells.

A J Grosovsky 1, J G de Boer 1, P J de Jong 1, E A Drobetsky 1, B W Glickman 1
PMCID: PMC279508  PMID: 3422416

Abstract

The relative role of point mutations and large genomic rearrangements in ionizing radiation-induced mutagenesis has been an issue of long-standing interest. Recent studies using Southern blotting analysis permit the partitioning of ionizing radiation-induced mutagenesis in mammalian cells into detectable deletions and major genomic rearrangements and into point mutations. The molecular nature of these point mutations has been left unresolved; they may include base substitutions as well as small deletions, insertions, and frame-shifts below the level of resolution of Southern blotting analysis. In this investigation, we have characterized a collection of ionizing radiation-induced point mutations at the endogenous adenine phosphoribosyltransferase (aprt) locus of Chinese hamster ovary cells at the DNA sequence level. Base substitutions represented approximately equal to 2/3 of the point mutations analyzed. Although the collection of mutants is relatively small, every possible type of base substitution event has been recovered. These mutations are well distributed throughout the coding sequence with only one multiple occurrence. Small deletions represented the remainder of characterized mutants; no insertions have been observed. Sequence-directed mechanisms mediated by direct repeats could account for some of the observed deletions, while others appear to be directly attributable to radiation-induced strand breakage.

Full text

PDF
188

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albertini A. M., Hofer M., Calos M. P., Miller J. H. On the formation of spontaneous deletions: the importance of short sequence homologies in the generation of large deletions. Cell. 1982 Jun;29(2):319–328. doi: 10.1016/0092-8674(82)90148-9. [DOI] [PubMed] [Google Scholar]
  2. Arlett C. F., Turnbull D., Harcourt S. A., Lehmann A. R., Colella C. M. A comparison of the 8-azaguanine and ouabain-resistance systems for the selection of induced mutant Chinese hamster cells. Mutat Res. 1975 Dec;33(2-3):261–278. doi: 10.1016/0027-5107(75)90202-x. [DOI] [PubMed] [Google Scholar]
  3. Benzer S. FINE STRUCTURE OF A GENETIC REGION IN BACTERIOPHAGE. Proc Natl Acad Sci U S A. 1955 Jun 15;41(6):344–354. doi: 10.1073/pnas.41.6.344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bradley W. E., Letovanec D. High-frequency nonrandom mutational event at the adenine phosphoribosyltransferase (aprt) locus of sib-selected CHO variants heterozygous for aprt. Somatic Cell Genet. 1982 Jan;8(1):51–66. doi: 10.1007/BF01538650. [DOI] [PubMed] [Google Scholar]
  5. Brandenburger A., Godson G. N., Radman M., Glickman B. W., van Sluis C. A., Doubleday O. P. Radiation-induced base substitution mutagenesis in single-stranded DNA phage M13. Nature. 1981 Nov 12;294(5837):180–182. doi: 10.1038/294180a0. [DOI] [PubMed] [Google Scholar]
  6. Chang C. C., Trosko J. E., Akera T. Characterization of ultraviolet light-induced ouabain-resistant mutations in Chinese hamster cells. Mutat Res. 1978 Jul;51(1):85–98. doi: 10.1016/0027-5107(78)90011-8. [DOI] [PubMed] [Google Scholar]
  7. Cleaver J. E. Induction of thioguanine- and ouabain-resistant mutants and single-strand breaks in the DNA of Chinese hamster ovary cells by 3H-thymidine. Genetics. 1977 Sep;87(1):129–138. doi: 10.1093/genetics/87.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Conkling M. A., Grunau J. A., Drake J. W. Gamma-ray mutagenesis in bacteriophage T4. Genetics. 1976 Apr;82(4):565–575. doi: 10.1093/genetics/82.4.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Das G., Stewart J. W., Sherman F. Mutational alterations induced in yeast by ionizing radiation. Mutat Res. 1986 Dec;163(3):233–245. doi: 10.1016/0027-5107(86)90021-7. [DOI] [PubMed] [Google Scholar]
  10. Farabaugh P. J., Schmeissner U., Hofer M., Miller J. H. Genetic studies of the lac repressor. VII. On the molecular nature of spontaneous hotspots in the lacI gene of Escherichia coli. J Mol Biol. 1978 Dec 25;126(4):847–857. doi: 10.1016/0022-2836(78)90023-2. [DOI] [PubMed] [Google Scholar]
  11. Friedrich U., Coffino P. Mutagenesis in S49 mouse lymphoma cells: induction of resistance to ouabain, 6-thioguanine, and dibutyryl cyclic AMP. Proc Natl Acad Sci U S A. 1977 Feb;74(2):679–683. doi: 10.1073/pnas.74.2.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Glickman B. W., Rietveld K., Aaron C. S. gamma-Ray induced mutational spectrum in the lacI gene of Escherichia coli: comparison of induced and spontaneous spectra at the molecular level. Mutat Res. 1980 Jan;69(1):1–12. doi: 10.1016/0027-5107(80)90171-2. [DOI] [PubMed] [Google Scholar]
  13. Glickman B. W., Ripley L. S. Structural intermediates of deletion mutagenesis: a role for palindromic DNA. Proc Natl Acad Sci U S A. 1984 Jan;81(2):512–516. doi: 10.1073/pnas.81.2.512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Graf L. H., Jr, Chasin L. A. Direct demonstration of genetic alterations at the dihydrofolate reductase locus after gamma irradiation. Mol Cell Biol. 1982 Jan;2(1):93–96. doi: 10.1128/mcb.2.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Grosovsky A. J., Drobetsky E. A., deJong P. J., Glickman B. W. Southern analysis of genomic alterations in gamma-ray-induced aprt- hamster cell mutants. Genetics. 1986 Jun;113(2):405–415. doi: 10.1093/genetics/113.2.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kunz B. A., Glickman B. W. The role of pyrimidine dimers as premutagenic lesions: a study of targeted vs. untargeted mutagenesis in the lacI gene of Escherichia coli. Genetics. 1984 Mar;106(3):347–364. doi: 10.1093/genetics/106.3.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Levinson A., Silver D., Seed B. Minimal size plasmids containing an M13 origin for production of single-strand transducing particles. J Mol Appl Genet. 1984;2(6):507–517. [PubMed] [Google Scholar]
  18. Liber H. L., LeMotte P. K., Little J. B. Toxicity and mutagenicity of X-rays and [125I]dUrd or [3H]TdR incorporated in the DNA of human lymphoblast cells. Mutat Res. 1983 Nov;111(3):387–404. doi: 10.1016/0027-5107(83)90035-0. [DOI] [PubMed] [Google Scholar]
  19. Liber H. L., Leong P. M., Terry V. H., Little J. B. X-rays mutate human lymphoblast cells at genetic loci that should respond only to point mutagens. Mutat Res. 1986 Oct;163(1):91–97. doi: 10.1016/0027-5107(86)90062-x. [DOI] [PubMed] [Google Scholar]
  20. Magni G. E., Panzeri L., Sora S. Molecular specificity of x-radiation and its repair in Saccharomyces cerevisiae. Mutat Res. 1977 Feb;42(2):223–234. doi: 10.1016/s0027-5107(77)80026-2. [DOI] [PubMed] [Google Scholar]
  21. Miller J. H. Mutagenic specificity of ultraviolet light. J Mol Biol. 1985 Mar 5;182(1):45–65. doi: 10.1016/0022-2836(85)90026-9. [DOI] [PubMed] [Google Scholar]
  22. Muller H. J. ARTIFICIAL TRANSMUTATION OF THE GENE. Science. 1927 Jul 22;66(1699):84–87. doi: 10.1126/science.66.1699.84. [DOI] [PubMed] [Google Scholar]
  23. Nalbantoglu J., Hartley D., Phear G., Tear G., Meuth M. Spontaneous deletion formation at the aprt locus of hamster cells: the presence of short sequence homologies and dyad symmetries at deletion termini. EMBO J. 1986 Jun;5(6):1199–1204. doi: 10.1002/j.1460-2075.1986.tb04347.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Prakash L., Sherman F. Mutagenic specificity: reversion of iso-1-cytochrome c mutants of yeast. J Mol Biol. 1973 Sep 5;79(1):65–82. doi: 10.1016/0022-2836(73)90270-2. [DOI] [PubMed] [Google Scholar]
  25. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schaaper R. M., Danforth B. N., Glickman B. W. Mechanisms of spontaneous mutagenesis: an analysis of the spectrum of spontaneous mutation in the Escherichia coli lacI gene. J Mol Biol. 1986 May 20;189(2):273–284. doi: 10.1016/0022-2836(86)90509-7. [DOI] [PubMed] [Google Scholar]
  27. Schaaper R. M., Danforth B. N., Glickman B. W. Rapid repeated cloning of mutant lac repressor genes. Gene. 1985;39(2-3):181–189. doi: 10.1016/0378-1119(85)90312-9. [DOI] [PubMed] [Google Scholar]
  28. Skopek T. R., Hutchinson F. DNA base sequence changes induced by bromouracil mutagenesis of lambda phage. J Mol Biol. 1982 Jul 25;159(1):19–33. doi: 10.1016/0022-2836(82)90029-8. [DOI] [PubMed] [Google Scholar]
  29. Srám R. J., Holá N., Kotesovec F., Novákova A. Cytogenetic analysis of peripheral blood lymphocytes in glass workers occupationally exposed to mineral oils. Mutat Res. 1985 Dec;144(4):277–280. doi: 10.1016/0165-7992(85)90064-8. [DOI] [PubMed] [Google Scholar]
  30. Stankowski L. F., Jr, Tindall K. R., Hsie A. W. Quantitative and molecular analyses of ethyl methanesulfonate- and ICR 191-induced mutation in AS52 cells. Mutat Res. 1986 Apr;160(2):133–147. doi: 10.1016/0027-5107(86)90037-0. [DOI] [PubMed] [Google Scholar]
  31. Streisinger G., Okada Y., Emrich J., Newton J., Tsugita A., Terzaghi E., Inouye M. Frameshift mutations and the genetic code. This paper is dedicated to Professor Theodosius Dobzhansky on the occasion of his 66th birthday. Cold Spring Harb Symp Quant Biol. 1966;31:77–84. doi: 10.1101/sqb.1966.031.01.014. [DOI] [PubMed] [Google Scholar]
  32. Thacker J., Stephens M. A., Stretch A. Mutation to ouabain-resistance in Chinese hamster cells: induction by ethyl methanesulphonate and lack of induction by ionising radiation. Mutat Res. 1978 Aug;51(2):255–270. doi: 10.1016/s0027-5107(78)80021-9. [DOI] [PubMed] [Google Scholar]
  33. Thacker J. The molecular nature of mutations in cultured mammalian cells: a review. Mutat Res. 1985 Jun-Jul;150(1-2):431–442. doi: 10.1016/0027-5107(85)90140-x. [DOI] [PubMed] [Google Scholar]
  34. Thacker J. The nature of mutants induced by ionising radiation in cultured hamster cells. III. Molecular characterization of HPRT-deficient mutants induced by gamma-rays or alpha-particles showing that the majority have deletions of all or part of the hprt gene. Mutat Res. 1986 May;160(3):267–275. doi: 10.1016/0027-5107(86)90137-5. [DOI] [PubMed] [Google Scholar]
  35. Yandell D. W., Dryja T. P., Little J. B. Somatic mutations at a heterozygous autosomal locus in human cells occur more frequently by allele loss than by intragenic structural alterations. Somat Cell Mol Genet. 1986 May;12(3):255–263. doi: 10.1007/BF01570784. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES