Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1988 Feb;85(4):1257–1261. doi: 10.1073/pnas.85.4.1257

cAMP analogs promote survival and neurite outgrowth in cultures of rat sympathetic and sensory neurons independently of nerve growth factor.

R E Rydel 1, L A Greene 1
PMCID: PMC279746  PMID: 2829221

Abstract

Nerve growth factor (NGF) is a neurotrophic agent for sympathetic and embryonic sensory neurons both in vivo and in vitro. We report here that the membrane-permeant cAMP analogs, 8-(4-chlorophenylthio)-cAMP and 8-bromo-cAMP, can replace NGF in promoting long-term survival and neurite outgrowth in cultures of rat neonatal sympathetic and embryonic sensory neurons. N6-substituted analogs, including the more commonly used N6,O2'-dibutyryl-cAMP, are less efficacious. Additivity and switching experiments indicate that the cAMP analogs affect the same neuronal population as that maintained by NGF. However, unlike NGF, the cAMP analogs do not evoke somatic hypertrophy. Moreover, studies with sympathetic neurons reveal that the neurotrophic actions of the cAMP analogs, but not of NGF, are blocked by the axial diastereoisomer of adenosine 3',5'-phosphorothioate, a competitive cAMP antagonist. Thus, the mechanism by which cAMP analogs promote neuronal survival and differentiation appears to involve activation of cAMP-dependent protein kinases, whereas, in contrast, the same effects of NGF neither require nor are mediated by such a pathway. Furthermore, the different efficacies observed with N6- and C8-substituted cAMP analogs suggest that this neurotrophic pathway may involve differential activation of the regulatory subunits of cAMP-dependent protein kinases. The presence of this parallel, cAMP-responsive, neurotrophic pathway in at least two types of NGF-responsive neurons may be developmentally important and has the potential to be exploited for the treatment of injuries or diseases affecting these and possibly other nerve cells.

Full text

PDF
1260

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brenneman D. E., Fitzgerald S., Litzinger M. J. Neuronal survival during electrical blockade is increased by 8-bromo cyclic adenosine 3',5' monophosphate. J Pharmacol Exp Ther. 1985 May;233(2):402–408. [PubMed] [Google Scholar]
  2. Buxton I. L., Brunton L. L. Compartments of cyclic AMP and protein kinase in mammalian cardiomyocytes. J Biol Chem. 1983 Sep 10;258(17):10233–10239. [PubMed] [Google Scholar]
  3. Campenot R. B. Regeneration of neurites on long-term cultures of sympathetic neurons deprived of nerve growth factor. Science. 1981 Oct 30;214(4520):579–581. doi: 10.1126/science.7292000. [DOI] [PubMed] [Google Scholar]
  4. Chew C. S. Parietal cell protein kinases. Selective activation of type I cAMP-dependent protein kinase by histamine. J Biol Chem. 1985 Jun 25;260(12):7540–7550. [PubMed] [Google Scholar]
  5. Chun L. L., Patterson P. H. Role of nerve growth factor in the development of rat sympathetic neurons in vitro. II. Developmental studies. J Cell Biol. 1977 Dec;75(3):705–711. doi: 10.1083/jcb.75.3.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Connolly J. L., Green S. A., Greene L. A. Comparison of rapid changes in surface morphology and coated pit formation of PC12 cells in response to nerve growth factor, epidermal growth factor, and dibutyryl cyclic AMP. J Cell Biol. 1984 Feb;98(2):457–465. doi: 10.1083/jcb.98.2.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Coughlin M. D., Boyer D. M., Black I. B. Embryologic development of a mouse sympathetic ganglion in vivo and in vitro. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3438–3442. doi: 10.1073/pnas.74.8.3438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Coughlin M. D., Collins M. B. Nerve growth factor-independent development of embryonic mouse sympathetic neurons in dissociated cell culture. Dev Biol. 1985 Aug;110(2):392–401. doi: 10.1016/0012-1606(85)90098-3. [DOI] [PubMed] [Google Scholar]
  9. Døskeland S. O., Ogreid D., Ekanger R., Sturm P. A., Miller J. P., Suva R. H. Mapping of the two intrachain cyclic nucleotide binding sites of adenosine cyclic 3',5'-phosphate dependent protein kinase I. Biochemistry. 1983 Mar 1;22(5):1094–1101. doi: 10.1021/bi00274a016. [DOI] [PubMed] [Google Scholar]
  10. Flockhart D. A., Corbin J. D. Regulatory mechanisms in the control of protein kinases. CRC Crit Rev Biochem. 1982 Feb;12(2):133–186. doi: 10.3109/10409238209108705. [DOI] [PubMed] [Google Scholar]
  11. Frazier W. A., Ohlendorf C. E., Boyd L. F., Aloe L., Johnson E. M., Ferrendelli J. A., Bradshaw R. A. Mechanism of action of nerve growth factor and cyclic AMP on neurite outgrowth in embryonic chick sensory ganglia: demonstration of independent pathways of stimulation. Proc Natl Acad Sci U S A. 1973 Aug;70(8):2448–2452. doi: 10.1073/pnas.70.8.2448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gorin P. D., Johnson E. M., Jr Effects of long-term nerve growth factor deprivation on the nervous system of the adult rat: an experimental autoimmune approach. Brain Res. 1980 Sep 29;198(1):27–42. doi: 10.1016/0006-8993(80)90341-8. [DOI] [PubMed] [Google Scholar]
  13. Greene L. A., Shooter E. M. The nerve growth factor: biochemistry, synthesis, and mechanism of action. Annu Rev Neurosci. 1980;3:353–402. doi: 10.1146/annurev.ne.03.030180.002033. [DOI] [PubMed] [Google Scholar]
  14. Greene S. L., Perry H. O. Is it skin cancer--or keratoacanthoma? Geriatrics. 1984 Sep;39(9):91-4, 98-9, 102. [PubMed] [Google Scholar]
  15. Gunning P. W., Letourneau P. C., Landreth G. E., Shooter E. M. The action of nerve growth factor and dibutyryl adenosine cyclic 3':5'-monophosphate on rat pheochromocytoma reveals distinct stages in the mechanisms underlying neurite outgrowth. J Neurosci. 1981 Oct;1(10):1085–1095. doi: 10.1523/JNEUROSCI.01-10-01085.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Halegoua S., Patrick J. Nerve growth factor mediates phosphorylation of specific proteins. Cell. 1980 Nov;22(2 Pt 2):571–581. doi: 10.1016/0092-8674(80)90367-0. [DOI] [PubMed] [Google Scholar]
  17. Hefti F. Nerve growth factor promotes survival of septal cholinergic neurons after fimbrial transections. J Neurosci. 1986 Aug;6(8):2155–2162. doi: 10.1523/JNEUROSCI.06-08-02155.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Heidemann S. R., Joshi H. C., Schechter A., Fletcher J. R., Bothwell M. Synergistic effects of cyclic AMP and nerve growth factor on neurite outgrowth and microtubule stability of PC12 cells. J Cell Biol. 1985 Mar;100(3):916–927. doi: 10.1083/jcb.100.3.916. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hoppe J., Rieke E., Wagner K. G. Mechanism of activation of protein kinase I from rabbit skeletal muscle. Mapping of the cAMP site by spin-labeled cyclic nucleotides. Eur J Biochem. 1978 Feb;83(2):411–417. doi: 10.1111/j.1432-1033.1978.tb12107.x. [DOI] [PubMed] [Google Scholar]
  20. Hoppe J., Wagner K. G. Synthesis and properties of N6, C-8 and C-2 spin-labelled derivatives of adenosine cyclic 3':5'-monophosphate. Eur J Biochem. 1974 Oct 2;48(2):519–525. doi: 10.1111/j.1432-1033.1974.tb03793.x. [DOI] [PubMed] [Google Scholar]
  21. Johnson E. M., Jr, Gorin P. D., Brandeis L. D., Pearson J. Dorsal root ganglion neurons are destroyed by exposure in utero to maternal antibody to nerve growth factor. Science. 1980 Nov 21;210(4472):916–918. doi: 10.1126/science.7192014. [DOI] [PubMed] [Google Scholar]
  22. LEVI-MONTALCINI R., ANGELETTI P. U. Essential role of the nerve growth factor in the survival and maintenance of dissociated sensory and sympathetic embryonic nerve cells in vitro. Dev Biol. 1963 Mar;6:653–659. doi: 10.1016/0012-1606(63)90149-0. [DOI] [PubMed] [Google Scholar]
  23. Lee V. M., Shelanski M. L., Greene L. A. Characterization of antisera raised against cultured rat sympathetic neurons. Neuroscience. 1980;5(12):2239–2245. doi: 10.1016/0306-4522(80)90140-2. [DOI] [PubMed] [Google Scholar]
  24. Levi-Montalcini R., Angeletti P. U. Nerve growth factor. Physiol Rev. 1968 Jul;48(3):534–569. doi: 10.1152/physrev.1968.48.3.534. [DOI] [PubMed] [Google Scholar]
  25. Levi-Montalcini R., Booker B. DESTRUCTION OF THE SYMPATHETIC GANGLIA IN MAMMALS BY AN ANTISERUM TO A NERVE-GROWTH PROTEIN. Proc Natl Acad Sci U S A. 1960 Mar;46(3):384–391. doi: 10.1073/pnas.46.3.384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Litvin Y., PasMantier R., Fleischer N., Erlichman J. Hormonal activation of the cAMP-dependent protein kinases in AtT20 cells. Preferential activation of protein kinase I by corticotropin releasing factor, isoproterenol, and forskolin. J Biol Chem. 1984 Aug 25;259(16):10296–10302. [PubMed] [Google Scholar]
  27. Lohmann S. M., Walter U. Regulation of the cellular and subcellular concentrations and distribution of cyclic nucleotide-dependent protein kinases. Adv Cyclic Nucleotide Protein Phosphorylation Res. 1984;18:63–117. [PubMed] [Google Scholar]
  28. Manthorpe M., Engvall E., Ruoslahti E., Longo F. M., Davis G. E., Varon S. Laminin promotes neuritic regeneration from cultured peripheral and central neurons. J Cell Biol. 1983 Dec;97(6):1882–1890. doi: 10.1083/jcb.97.6.1882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Middleton P., Jaramillo F., Schuetze S. M. Forskolin increases the rate of acetylcholine receptor desensitization at rat soleus endplates. Proc Natl Acad Sci U S A. 1986 Jul;83(13):4967–4971. doi: 10.1073/pnas.83.13.4967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Mobley W. C., Rutkowski J. L., Tennekoon G. I., Buchanan K., Johnston M. V. Choline acetyltransferase activity in striatum of neonatal rats increased by nerve growth factor. Science. 1985 Jul 19;229(4710):284–287. doi: 10.1126/science.2861660. [DOI] [PubMed] [Google Scholar]
  31. Mobley W. C., Schenker A., Shooter E. M. Characterization and isolation of proteolytically modified nerve growth factor. Biochemistry. 1976 Dec 14;15(25):5543–5552. doi: 10.1021/bi00670a019. [DOI] [PubMed] [Google Scholar]
  32. Nathanson J. A. Cyclic nucleotides and nervous system function. Physiol Rev. 1977 Apr;57(2):157–256. doi: 10.1152/physrev.1977.57.2.157. [DOI] [PubMed] [Google Scholar]
  33. O'Brian C. A., Roczniak S. O., Bramson H. N., Baraniak J., Stec W. J., Kaiser E. T. A kinetic study of interactions of (Rp)- and (Sp)-adenosine cyclic 3',5'-phosphorothioates with type II bovine cardiac muscle adenosine cyclic 3',5'-phosphate dependent protein kinase. Biochemistry. 1982 Aug 31;21(18):4371–4376. doi: 10.1021/bi00261a028. [DOI] [PubMed] [Google Scholar]
  34. Ogreid D., Ekanger R., Suva R. H., Miller J. P., Sturm P., Corbin J. D., Døskeland S. O. Activation of protein kinase isozymes by cyclic nucleotide analogs used singly or in combination. Principles for optimizing the isozyme specificity of analog combinations. Eur J Biochem. 1985 Jul 1;150(1):219–227. doi: 10.1111/j.1432-1033.1985.tb09010.x. [DOI] [PubMed] [Google Scholar]
  35. Prasad K. N. Differentiation of neuroblastoma cells in culture. Biol Rev Camb Philos Soc. 1975 May;50(2):129–165. doi: 10.1111/j.1469-185x.1975.tb01055.x. [DOI] [PubMed] [Google Scholar]
  36. Rannels S. R., Corbin J. D. Two different intrachain cAMP binding sites of cAMP-dependent protein kinases. J Biol Chem. 1980 Aug 10;255(15):7085–7088. [PubMed] [Google Scholar]
  37. Recio-Pinto E., Rechler M. M., Ishii D. N. Effects of insulin, insulin-like growth factor-II, and nerve growth factor on neurite formation and survival in cultured sympathetic and sensory neurons. J Neurosci. 1986 May;6(5):1211–1219. doi: 10.1523/JNEUROSCI.06-05-01211.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Richter-Landsberg C., Jastorff B. In vitro phosphorylation of microtubule-associated protein 2: differential effects of cyclic AMP analogues. J Neurochem. 1985 Oct;45(4):1218–1222. doi: 10.1111/j.1471-4159.1985.tb05545.x. [DOI] [PubMed] [Google Scholar]
  39. Richter-Landsberg C., Jastorff B. The role of cAMP in nerve growth factor-promoted neurite outgrowth in PC12 cells. J Cell Biol. 1986 Mar;102(3):821–829. doi: 10.1083/jcb.102.3.821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Rothermel J. D., Jastorff B., Botelho L. H. Inhibition of glucagon-induced glycogenolysis in isolated rat hepatocytes by the Rp diastereomer of adenosine cyclic 3',5'-phosphorothioate. J Biol Chem. 1984 Jul 10;259(13):8151–8155. [PubMed] [Google Scholar]
  41. Rothermel J. D., Stec W. J., Baraniak J., Jastorff B., Botelho L. H. Inhibition of glycogenolysis in isolated rat hepatocytes by the Rp diastereomer of adenosine cyclic 3',5'-phosphorothioate. J Biol Chem. 1983 Oct 25;258(20):12125–12128. [PubMed] [Google Scholar]
  42. Salzer J. L., Bunge R. P., Glaser L. Studies of Schwann cell proliferation. III. Evidence for the surface localization of the neurite mitogen. J Cell Biol. 1980 Mar;84(3):767–778. doi: 10.1083/jcb.84.3.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Schwartz D. A., Rubin C. S. Identification and differential expression of two forms of regulatory subunits (RII) of cAMP-dependent protein kinase II in Friend erythroleukemic cells. Differentiation and 8-bromo-cAMP elicit a large and selective increase in the rate of biosynthesis of only one type of RII. J Biol Chem. 1985 May 25;260(10):6296–6303. [PubMed] [Google Scholar]
  44. Steinberg R. A., Agard D. A. Turnover of regulatory subunit of cyclic AMP-dependent protein kinase in S49 mouse lymphoma cells. Regulation by catalytic subunit and analogs of cyclic AMP. J Biol Chem. 1981 Nov 10;256(21):10731–10734. [PubMed] [Google Scholar]
  45. Tolkovsky A. M. Newly synthesized catalytic and regulatory components of adenylate cyclase are expressed in neurites of cultured sympathetic neurons. J Neurosci. 1987 Jan;7(1):110–119. doi: 10.1523/JNEUROSCI.07-01-00110.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Treistman S. N., Levitan I. B. Alteration of electrical activity in molluscan neurones by cyclic nucleotides and peptide factors. Nature. 1976 May 6;261(5555):62–64. doi: 10.1038/261062a0. [DOI] [PubMed] [Google Scholar]
  47. Varon S., Raiborn C., Tyszka E. In vitro studies of dissociated cells from newborn mouse dorsal root ganglia. Brain Res. 1973 May 17;54:51–63. doi: 10.1016/0006-8993(73)90033-4. [DOI] [PubMed] [Google Scholar]
  48. Wakade A. R., Edgar D., Thoenen H. Both nerve growth factor and high K+ concentrations support the survival of chick embryo sympathetic neurons. Evidence for a common mechanism of action. Exp Cell Res. 1983 Apr 1;144(2):377–384. doi: 10.1016/0014-4827(83)90417-2. [DOI] [PubMed] [Google Scholar]
  49. Walter U., Kanof P., Schulman H., Greengard P. Adenosine 3':5'-monophosphate receptor proteins in mammalian brain. J Biol Chem. 1978 Sep 10;253(17):6275–6280. [PubMed] [Google Scholar]
  50. Walter U., Uno I., Liu A. Y., Greengard P. Identification, characterization, and quantitative measurement of cyclic AMP receptor proteins in cytosol of various tissues using a photoaffinity ligand. J Biol Chem. 1977 Sep 25;252(18):6494–6500. [PubMed] [Google Scholar]
  51. Yu M. W., Tolson N. W., Guroff G. Increased phosphorylation of specific nuclear proteins in superior cervical ganglia and PC12 cells in response to nerve growth factor. J Biol Chem. 1980 Nov 10;255(21):10481–10492. [PubMed] [Google Scholar]
  52. de Wit R. J., Hekstra D., Jastorff B., Stec W. J., Baraniak J., Van Driel R., Van Haastert P. J. Inhibitory action of certain cyclophosphate derivatives of cAMP on cAMP-dependent protein kinases. Eur J Biochem. 1984 Jul 16;142(2):255–260. doi: 10.1111/j.1432-1033.1984.tb08279.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES