Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1988 Mar;85(6):1735–1739. doi: 10.1073/pnas.85.6.1735

5-Fluorodeoxyuridine as an alternative to the synthesis of mixed hybridization probes for the detection of specific gene sequences.

J F Habener 1, C D Vo 1, D B Le 1, G P Gryan 1, L Ercolani 1, A H Wang 1
PMCID: PMC279853  PMID: 2964636

Abstract

Synthetic complementary oligonucleotides are useful hybridization probes for the detection of mRNAs and genes encoding proteins for which only a partial amino acid sequence is known. Usually this involves the synthesis of mixtures of oligonucleotides complementary to all possible bases in degenerate positions of codons. As an alternative we have prepared and characterized a series of unique oligonucleotides containing a pyrimidine analog, 5-fluorodeoxyuridine (F). Thermodynamic parameters and the melting temperatures of hybrid duplexes containing A.F and G.F base pairs showed that they are considerably more stable than duplexes containing A.T and G.T base pairs. The stability of a duplex decreased linearly with the number of mismatches introduced at positions at least a codon apart. A 5-fluorodeoxyuridine-substituted oligonucleotide cDNA detects rat liver pyruvate carboxylase mRNA on a RNA gel blot with a dissociation temperature only 10 degrees C below the measured melting temperature in solution. We suggest that the complexity of oligonucleotide cDNAs used for screening gene libraries can be reduced by the design of single hybridization probes containing the substituted bases--5-fluorodeoxyuridine to pair with adenosine or guanosine, guanosine to pair with cytidine or thymidine, and deoxyinosine to pair with adenosine or cytidine at positions of codon degeneracy--and still retain near-maximum stability of hybrid duplexes.

Full text

PDF
1738

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aboul-ela F., Koh D., Tinoco I., Jr, Martin F. H. Base-base mismatches. Thermodynamics of double helix formation for dCA3XA3G + dCT3YT3G (X, Y = A,C,G,T). Nucleic Acids Res. 1985 Jul 11;13(13):4811–4824. doi: 10.1093/nar/13.13.4811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bugg C. E., Thomas J. M., Sundaralingam M., Rao S. T. Stereochemistry of nucleic acids and their constituents. X. Solid-state base-stacking patterns in nucleic acid constituents and polynucleotides. Biopolymers. 1971;10(1):175–219. doi: 10.1002/bip.360100113. [DOI] [PubMed] [Google Scholar]
  3. Gralla J., Crothers D. M. Free energy of imperfect nucleic acid helices. 3. Small internal loops resulting from mismatches. J Mol Biol. 1973 Aug 5;78(2):301–319. doi: 10.1016/0022-2836(73)90118-6. [DOI] [PubMed] [Google Scholar]
  4. Herrick D. J., Major P. P., Kufe D. W. Effect of methotrexate on incorporation and excision of 5-fluorouracil residues in human breast carcinoma DNA. Cancer Res. 1982 Dec;42(12):5015–5017. [PubMed] [Google Scholar]
  5. Huynh-Dinh T., Duchange N., Zakin M. M., Lemarchand A., Igolen J. Modified oligonucleotides as alternatives to the synthesis of mixed probes for the screening of cDNA libraries. Proc Natl Acad Sci U S A. 1985 Nov;82(22):7510–7514. doi: 10.1073/pnas.82.22.7510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jaskunas S. R., Cantor C. R., Tinoco I., Jr Association of complementary oligoribonucleotides in aqueous solution. Biochemistry. 1968 Sep;7(9):3164–3178. doi: 10.1021/bi00849a020. [DOI] [PubMed] [Google Scholar]
  7. Kafatos F. C., Jones C. W., Efstratiadis A. Determination of nucleic acid sequence homologies and relative concentrations by a dot hybridization procedure. Nucleic Acids Res. 1979 Nov 24;7(6):1541–1552. doi: 10.1093/nar/7.6.1541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kawase Y., Iwai S., Inoue H., Miura K., Ohtsuka E. Studies on nucleic acid interactions. I. Stabilities of mini-duplexes (dG2A4XA4G2-dC2T4YT4C2) and self-complementary d(GGGAAXYTTCCC) containing deoxyinosine and other mismatched bases. Nucleic Acids Res. 1986 Oct 10;14(19):7727–7736. doi: 10.1093/nar/14.19.7727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kremer A. B., Mikita T., Beardsley G. P. Chemical consequences of incorporation of 5-fluorouracil into DNA as studied by NMR. Biochemistry. 1987 Jan 27;26(2):391–397. doi: 10.1021/bi00376a009. [DOI] [PubMed] [Google Scholar]
  10. Kufe D. W., Scott P., Fram R., Major P. Biologic effect of 5-fluoro-2'-deoxyuridine incorporation in L1210 deoxyribonucleic acid. Biochem Pharmacol. 1983 Apr 15;32(8):1337–1340. doi: 10.1016/0006-2952(83)90443-4. [DOI] [PubMed] [Google Scholar]
  11. Lasken R. S., Goodman M. F. A fidelity assay using "dideoxy" DNA sequencing: a measurement of sequence dependence and frequency of forming 5-bromouracil X guanine base mispairs. Proc Natl Acad Sci U S A. 1985 Mar;82(5):1301–1305. doi: 10.1073/pnas.82.5.1301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Martin F. H., Castro M. M., Aboul-ela F., Tinoco I., Jr Base pairing involving deoxyinosine: implications for probe design. Nucleic Acids Res. 1985 Dec 20;13(24):8927–8938. doi: 10.1093/nar/13.24.8927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Millican T. A., Mock G. A., Chauncey M. A., Patel T. P., Eaton M. A., Gunning J., Cutbush S. D., Neidle S., Mann J. Synthesis and biophysical studies of short oligodeoxynucleotides with novel modifications: a possible approach to the problem of mixed base oligodeoxynucleotide synthesis. Nucleic Acids Res. 1984 Oct 11;12(19):7435–7453. doi: 10.1093/nar/12.19.7435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Noda M., Furutani Y., Takahashi H., Toyosato M., Hirose T., Inayama S., Nakanishi S., Numa S. Cloning and sequence analysis of cDNA for bovine adrenal preproenkephalin. Nature. 1982 Jan 21;295(5846):202–206. doi: 10.1038/295202a0. [DOI] [PubMed] [Google Scholar]
  15. Pon R. T., Damha M. J., Ogilvie K. K. Modification of guanine bases by nucleoside phosphoramidite reagents during the solid phase synthesis of oligonucleotides. Nucleic Acids Res. 1985 Sep 25;13(18):6447–6465. doi: 10.1093/nar/13.18.6447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Seela F., Kaiser K. Phosphoramidites of base-modified 2'-deoxyinosine isosteres and solid-phase synthesis of d(GCI*CGC) oligomers containing an ambiguous base. Nucleic Acids Res. 1986 Feb 25;14(4):1825–1844. doi: 10.1093/nar/14.4.1825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Skopek T. R., Hutchinson F. DNA base sequence changes induced by bromouracil mutagenesis of lambda phage. J Mol Biol. 1982 Jul 25;159(1):19–33. doi: 10.1016/0022-2836(82)90029-8. [DOI] [PubMed] [Google Scholar]
  18. Spindel E. R., Chin W. W., Price J., Rees L. H., Besser G. M., Habener J. F. Cloning and characterization of cDNAs encoding human gastrin-releasing peptide. Proc Natl Acad Sci U S A. 1984 Sep;81(18):5699–5703. doi: 10.1073/pnas.81.18.5699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Suggs S. V., Wallace R. B., Hirose T., Kawashima E. H., Itakura K. Use of synthetic oligonucleotides as hybridization probes: isolation of cloned cDNA sequences for human beta 2-microglobulin. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6613–6617. doi: 10.1073/pnas.78.11.6613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. TRAUTNER T. A., SWARTZ M. N., KORNBERG A. Enzymatic synthesis of deoxyribonucleic acid. X. Influence of bromouracil substitutions on replication. Proc Natl Acad Sci U S A. 1962 Mar 15;48:449–455. doi: 10.1073/pnas.48.3.449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Takahashi Y., Kato K., Hayashizaki Y., Wakabayashi T., Ohtsuka E., Matsuki S., Ikehara M., Matsubara K. Molecular cloning of the human cholecystokinin gene by use of a synthetic probe containing deoxyinosine. Proc Natl Acad Sci U S A. 1985 Apr;82(7):1931–1935. doi: 10.1073/pnas.82.7.1931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tibanyenda N., De Bruin S. H., Haasnoot C. A., van der Marel G. A., van Boom J. H., Hilbers C. W. The effect of single base-pair mismatches on the duplex stability of d(T-A-T-T-A-A-T-A-T-C-A-A-G-T-T-G) . d(C-A-A-C-T-T-G-A-T-A-T-T-A-A-T-A). Eur J Biochem. 1984 Feb 15;139(1):19–27. doi: 10.1111/j.1432-1033.1984.tb07970.x. [DOI] [PubMed] [Google Scholar]
  23. Werntges H., Steger G., Riesner D., Fritz H. J. Mismatches in DNA double strands: thermodynamic parameters and their correlation to repair efficiencies. Nucleic Acids Res. 1986 May 12;14(9):3773–3790. doi: 10.1093/nar/14.9.3773. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES