Abstract
A mitochondrial gene from Saccharomyces cerevisiae encoding a hydrophobic membrane protein, subunit 8 of the F0/F1-type mitochondrial ATPase complex, has been functionally replaced by an artificial nuclear gene specifying an imported version of this protein. The experiments reported here utilized a multicopy expression vector (pLF1) that replicates in the nucleus of yeast cells and that carries an inserted DNA segment, specifying a precursor protein (N9/Y8) consisting of subunit 8 fused to an N-terminal cleavable transit peptide (the leader sequence from Neurospora crassa ATPase subunit 9). The successful incorporation of the imported subunit 8 into functional ATPase complexes after transformation with pLF1 expressing N9/Y8 was indicated by the efficient genetic complementation of respiratory growth defects of aap1 mit- mutants, which lack endogenous subunit 8. The reconstitution of ATPase function was confirmed by biochemical assays of ATPase performance in mitochondria and by immunochemical analyses that demonstrated the assembly of the cytoplasmically synthesized subunit 8 into the ATPase complex. Reconstitution of ATPase function required the cytoplasmically synthesized subunit to have a transit peptide. The strategy for importation and reconstitution developed for subunit 8 leads to a systematic approach to the directed manipulation of mitochondrially encoded membrane-associated proteins that has general implications for exploring membrane biogenesis mechanistically and evolutionarily.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Banroques J., Delahodde A., Jacq C. A mitochondrial RNA maturase gene transferred to the yeast nucleus can control mitochondrial mRNA splicing. Cell. 1986 Sep 12;46(6):837–844. doi: 10.1016/0092-8674(86)90065-6. [DOI] [PubMed] [Google Scholar]
- Beggs J. D. Transformation of yeast by a replicating hybrid plasmid. Nature. 1978 Sep 14;275(5676):104–109. doi: 10.1038/275104a0. [DOI] [PubMed] [Google Scholar]
- Choo W. M., Hadikusumo R. G., Marzuki S. Mitochondrial adenosine triphosphatase in mit- mutants of Saccharomyces cerevisiase with defective subunit 6 of the enzyme complex. Biochim Biophys Acta. 1985;806(2):290–304. doi: 10.1016/0005-2728(85)90108-2. [DOI] [PubMed] [Google Scholar]
- Colleaux L., d'Auriol L., Betermier M., Cottarel G., Jacquier A., Galibert F., Dujon B. Universal code equivalent of a yeast mitochondrial intron reading frame is expressed into E. coli as a specific double strand endonuclease. Cell. 1986 Feb 28;44(4):521–533. doi: 10.1016/0092-8674(86)90262-x. [DOI] [PubMed] [Google Scholar]
- Crowley J. C., Kaback D. B. Molecular cloning of chromosome I DNA from Saccharomyces cerevisiae: isolation of the ADE1 gene. J Bacteriol. 1984 Jul;159(1):413–417. doi: 10.1128/jb.159.1.413-417.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Devenish R. J., Maxwell R. J., Beilharz M. W., Nagley P., Linnane A. W. Construction of expression vectors for the production of interferons in yeast. Dev Biol Stand. 1987;67:185–199. [PubMed] [Google Scholar]
- Engelman D. M., Steitz T. A. The spontaneous insertion of proteins into and across membranes: the helical hairpin hypothesis. Cell. 1981 Feb;23(2):411–422. doi: 10.1016/0092-8674(81)90136-7. [DOI] [PubMed] [Google Scholar]
- Gearing D. P., McMullen G. L., Nagley P. Chemical synthesis of a mitochondrial gene designed for expression in the yeast nucleus. Biochem Int. 1985 Jun;10(6):907–915. [PubMed] [Google Scholar]
- Gearing D. P., Nagley P. Yeast mitochondrial ATPase subunit 8, normally a mitochondrial gene product, expressed in vitro and imported back into the organelle. EMBO J. 1986 Dec 20;5(13):3651–3655. doi: 10.1002/j.1460-2075.1986.tb04695.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hadikusumo R. G., Hertzog P. J., Marzuki S. Monoclonal antibodies against subunits of yeast mitochondrial H+-ATPase. Biochim Biophys Acta. 1984 Jun 26;765(3):258–267. doi: 10.1016/0005-2728(84)90164-6. [DOI] [PubMed] [Google Scholar]
- Hartl F. U., Schmidt B., Wachter E., Weiss H., Neupert W. Transport into mitochondria and intramitochondrial sorting of the Fe/S protein of ubiquinol-cytochrome c reductase. Cell. 1986 Dec 26;47(6):939–951. doi: 10.1016/0092-8674(86)90809-3. [DOI] [PubMed] [Google Scholar]
- John U. P., Nagley P. Amino acid substitutions in mitochondrial ATPase subunit 6 of Saccharomyces cerevisiae leading to oligomycin resistance. FEBS Lett. 1986 Oct 20;207(1):79–83. doi: 10.1016/0014-5793(86)80016-3. [DOI] [PubMed] [Google Scholar]
- Macreadie I. G., Novitski C. E., Maxwell R. J., John U., Ooi B. G., McMullen G. L., Lukins H. B., Linnane A. W., Nagley P. Biogenesis of mitochondria: the mitochondrial gene (aap1) coding for mitochondrial ATPase subunit 8 in Saccharomyces cerevisiae. Nucleic Acids Res. 1983 Jul 11;11(13):4435–4451. doi: 10.1093/nar/11.13.4435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miasnikov A. N., Plavnik Iu A., Sasnauskas K. V., Gedminene G. K., Ianulaitis A. A. Nukleotidnaia posledovatel'nost' gena ADE 1 drozhzhei Saccharomyces cerevisiae. Bioorg Khim. 1986 Apr;12(4):555–558. [PubMed] [Google Scholar]
- Nagley P. Eukaryote membrane genetics: the Fo sector of mitochondrial ATP synthase. Trends Genet. 1988 Feb;4(2):46–51. doi: 10.1016/0168-9525(88)90066-2. [DOI] [PubMed] [Google Scholar]
- Ooi B. G., McMullen G. L., Linnane A. W., Nagley P., Novitski C. E. Biogenesis of mitochondria: DNA sequence analysis of mit- mutations in the mitochondrial oli1 gene coding for mitochondrial ATPase subunit 9 in Saccharomyces cerevisiae. Nucleic Acids Res. 1985 Feb 25;13(4):1327–1339. doi: 10.1093/nar/13.4.1327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parent S. A., Fenimore C. M., Bostian K. A. Vector systems for the expression, analysis and cloning of DNA sequences in S. cerevisiae. Yeast. 1985 Dec;1(2):83–138. doi: 10.1002/yea.320010202. [DOI] [PubMed] [Google Scholar]
- Rapoport T. A. Protein translocation across and integration into membranes. CRC Crit Rev Biochem. 1986;20(1):73–137. doi: 10.3109/10409238609115901. [DOI] [PubMed] [Google Scholar]
- Struhl K., Stinchcomb D. T., Scherer S., Davis R. W. High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1035–1039. doi: 10.1073/pnas.76.3.1035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tzagoloff A., Myers A. M. Genetics of mitochondrial biogenesis. Annu Rev Biochem. 1986;55:249–285. doi: 10.1146/annurev.bi.55.070186.001341. [DOI] [PubMed] [Google Scholar]
- Velours J., Esparza M., Hoppe J., Sebald W., Guerin B. Amino acid sequence of a new mitochondrially synthesized proteolipid of the ATP synthase of Saccharomyces cerevisiae. EMBO J. 1984 Jan;3(1):207–212. doi: 10.1002/j.1460-2075.1984.tb01785.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Velours J., Guerin B. Localisation of the hydrophilic C terminal part of the ATP synthase subunit 8 of Saccharomyces cerevisiae. Biochem Biophys Res Commun. 1986 Jul 16;138(1):78–86. doi: 10.1016/0006-291x(86)90249-4. [DOI] [PubMed] [Google Scholar]
- Willson T. A., Nagley P. Amino acid substitutions in subunit 9 of the mitochondrial ATPase complex of Saccharomyces cerevisiae. Sequence analysis of a series of revertants of an oli1 mit- mutant carrying an amino acid substitution in the hydrophilic loop of subunit 9. Eur J Biochem. 1987 Sep 1;167(2):291–297. doi: 10.1111/j.1432-1033.1987.tb13335.x. [DOI] [PubMed] [Google Scholar]
- von Heijne G. Why mitochondria need a genome. FEBS Lett. 1986 Mar 17;198(1):1–4. doi: 10.1016/0014-5793(86)81172-3. [DOI] [PubMed] [Google Scholar]