Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1988 Apr;85(8):2825–2829. doi: 10.1073/pnas.85.8.2825

Neural regulation of acetylcholine sensitivity in embryonic sympathetic neurons.

L W Role 1
PMCID: PMC280092  PMID: 3357893

Abstract

The development of transmitter sensitivity is an important component of synaptic differentiation. Despite a wealth of information about the appearance of acetylcholine (AcCho) sensitivity at the neuromuscular junction, the onset and regulation of this critical aspect of synaptogenesis has not previously been examined for synapse formation between neurons. To determine whether there is a role of presynaptic input in the induction of AcCho sensitivity at interneuronal synapses, AcCho-induced currents were measured in embryonic sympathetic neurons before and after synapse formation in vitro. The total AcCho sensitivity of postsynaptic neurons was increased nearly 10-fold after innervation. The effects of innervation are mimicked by medium conditioned by preganglionic neurons, suggesting that presynaptic neurons regulate postsynaptic AcCho sensitivity by release of a soluble factor. These observations provide evidence that presynaptic input regulates neuronal sensitivity to an identified synaptic transmitter.

Full text

PDF
2828

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blackshaw S., Warner A. Onset of acetylcholine sensitivity and endplate activity in developing myotome muscles of Xenopus. Nature. 1976 Jul 15;262(5565):217–218. doi: 10.1038/262217a0. [DOI] [PubMed] [Google Scholar]
  2. Boulter J., Evans K., Goldman D., Martin G., Treco D., Heinemann S., Patrick J. Isolation of a cDNA clone coding for a possible neural nicotinic acetylcholine receptor alpha-subunit. 1986 Jan 30-Feb 5Nature. 319(6052):368–374. doi: 10.1038/319368a0. [DOI] [PubMed] [Google Scholar]
  3. Brown D. A. Responses of normal and denervated cat superior cervical ganglia to some stimulant compounds. J Physiol. 1969 Mar;201(1):225–236. doi: 10.1113/jphysiol.1969.sp008752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chiappinelli V. A., Wolf K. M., DeBin J. A., Holt I. L. Kappa-flavitoxin: isolation of a new neuronal nicotinic receptor antagonist that is structurally related to kappa-bungarotoxin. Brain Res. 1987 Jan 27;402(1):21–29. doi: 10.1016/0006-8993(87)91043-2. [DOI] [PubMed] [Google Scholar]
  5. Choi D. W., Fischbach G. D. GABA conductance of chick spinal cord and dorsal root ganglion neurons in cell culture. J Neurophysiol. 1981 Apr;45(4):605–620. doi: 10.1152/jn.1981.45.4.605. [DOI] [PubMed] [Google Scholar]
  6. Cohen S. A., Fischbach G. D. Clusters of acetylcholine receptors located at identified nerve-muscle synapses in vitro. Dev Biol. 1977 Aug;59(1):24–38. doi: 10.1016/0012-1606(77)90237-8. [DOI] [PubMed] [Google Scholar]
  7. Dennis M. J. Development of the neuromuscular junction: inductive interactions between cells. Annu Rev Neurosci. 1981;4:43–68. doi: 10.1146/annurev.ne.04.030181.000355. [DOI] [PubMed] [Google Scholar]
  8. Downing J. E., Role L. W. Activators of protein kinase C enhance acetylcholine receptor desensitization in sympathetic ganglion neurons. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7739–7743. doi: 10.1073/pnas.84.21.7739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dunn P. M., Marshall L. M. Lack of nicotinic supersensitivity in frog sympathetic neurones following denervation. J Physiol. 1985 Jun;363:211–225. doi: 10.1113/jphysiol.1985.sp015705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Frank E., Fischbach G. D. Early events in neuromuscular junction formation in vitro: induction of acetylcholine receptor clusters in the postsynaptic membrane and morphology of newly formed synapses. J Cell Biol. 1979 Oct;83(1):143–158. doi: 10.1083/jcb.83.1.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Halvorsen S. W., Berg D. K. Identification of a nicotinic acetylcholine receptor on neurons using an alpha-neurotoxin that blocks receptor function. J Neurosci. 1986 Nov;6(11):3405–3412. doi: 10.1523/JNEUROSCI.06-11-03405.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  13. Jahr C. E., Jessell T. M. Synaptic transmission between dorsal root ganglion and dorsal horn neurons in culture: antagonism of monosynaptic excitatory postsynaptic potentials and glutamate excitation by kynurenate. J Neurosci. 1985 Aug;5(8):2281–2289. doi: 10.1523/JNEUROSCI.05-08-02281.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kullberg R. W., Lentz T. L., Cohen M. W. Development of the myotomal neuromuscular junction in Xenopus laevis: an electrophysiological and fine-structural study. Dev Biol. 1977 Oct 1;60(1):101–129. doi: 10.1016/0012-1606(77)90113-0. [DOI] [PubMed] [Google Scholar]
  15. Leah J. D., Gipps E., Kidson C. Synapse formation and induction of acetylcholine receptors by spinal neurones in cocultures with sympathetic ganglion and muscle cells. Dev Neurosci. 1986;8(2):76–88. doi: 10.1159/000112243. [DOI] [PubMed] [Google Scholar]
  16. Leah J., Dvorak D., Kidson C. Development of sensitivity to acetylcholine in cultured chick embryo sympathetic ganglion neurones. Neurosci Lett. 1980 Aug;19(1):73–77. doi: 10.1016/0304-3940(80)90258-x. [DOI] [PubMed] [Google Scholar]
  17. Loring R. H., Zigmond R. E. Ultrastructural distribution of 125I-toxin F binding sites on chick ciliary neurons: synaptic localization of a toxin that blocks ganglionic nicotinic receptors. J Neurosci. 1987 Jul;7(7):2153–2162. doi: 10.1523/JNEUROSCI.07-07-02153.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Margiotta J. F., Berg D. K., Dionne V. E. The properties and regulation of functional acetylcholine receptors on chick ciliary ganglion neurons. J Neurosci. 1987 Nov;7(11):3612–3622. doi: 10.1523/JNEUROSCI.07-11-03612.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nishi R., Berg D. K. Two components from eye tissue that differentially stimulate the growth and development of ciliary ganglion neurons in cell culture. J Neurosci. 1981 May;1(5):505–513. doi: 10.1523/JNEUROSCI.01-05-00505.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. O'Brien R. J., Fischbach G. D. Modulation of embryonic chick motoneuron glutamate sensitivity by interneurons and agonists. J Neurosci. 1986 Nov;6(11):3290–3296. doi: 10.1523/JNEUROSCI.06-11-03290.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Podleski T. R., Axelrod D., Ravdin P., Greenberg I., Johnson M. M., Salpeter M. M. Nerve extract induces increase and redistribution of acetylcholine receptors on cloned muscle cells. Proc Natl Acad Sci U S A. 1978 Apr;75(4):2035–2039. doi: 10.1073/pnas.75.4.2035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Poo M. M. Mobility and localization of proteins in excitable membranes. Annu Rev Neurosci. 1985;8:369–406. doi: 10.1146/annurev.ne.08.030185.002101. [DOI] [PubMed] [Google Scholar]
  23. Role L. W. Substance P modulation of acetylcholine-induced currents in embryonic chicken sympathetic and ciliary ganglion neurons. Proc Natl Acad Sci U S A. 1984 May;81(9):2924–2928. doi: 10.1073/pnas.81.9.2924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Salpeter M. M., Loring R. H. Nicotinic acetylcholine receptors in vertebrate muscle: properties, distribution and neural control. Prog Neurobiol. 1985;25(4):297–325. doi: 10.1016/0301-0082(85)90018-8. [DOI] [PubMed] [Google Scholar]
  25. Schuetze S. M., Role L. W. Developmental regulation of nicotinic acetylcholine receptors. Annu Rev Neurosci. 1987;10:403–457. doi: 10.1146/annurev.ne.10.030187.002155. [DOI] [PubMed] [Google Scholar]
  26. Smith M. A., Margiotta J. F., Berg D. K. Differential regulation of acetylcholine sensitivity and alpha-bungarotoxin-binding sites on ciliary ganglion neurons in cell culture. J Neurosci. 1983 Nov;3(11):2395–2402. doi: 10.1523/JNEUROSCI.03-11-02395.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Smith M. A., Margiotta J. F., Franco A., Jr, Lindstrom J. M., Berg D. K. Cholinergic modulation of an acetylcholine receptor-like antigen on the surface of chick ciliary ganglion neurons in cell culture. J Neurosci. 1986 Apr;6(4):946–953. doi: 10.1523/JNEUROSCI.06-04-00946.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Smith M. A., Stollberg J., Lindstrom J. M., Berg D. K. Characterization of a component in chick ciliary ganglia that cross-reacts with monoclonal antibodies to muscle and electric organ acetylcholine receptor. J Neurosci. 1985 Oct;5(10):2726–2731. doi: 10.1523/JNEUROSCI.05-10-02726.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Willard A. L., Nishi R. Neurons dissociated from rat myenteric plexus retain differentiated properties when grown in cell culture. III. Synaptic interactions and modulatory effects of neurotransmitter candidates. Neuroscience. 1985 Sep;16(1):213–221. doi: 10.1016/0306-4522(85)90058-2. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES