Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1993 Jun;61(6):2408–2418. doi: 10.1128/iai.61.6.2408-2418.1993

Identification of B-cell epitopes on the S4 subunit of pertussis toxin.

P H Ibsen 1, A Holm 1, J W Petersen 1, C E Olsen 1, I Heron 1
PMCID: PMC280863  PMID: 7684728

Abstract

The main purpose of the present study was to identify B-cell epitopes on the S4 subunit of pertussis toxin (PT) by the synthetic peptide approach. Two strategies were followed: (i) screening of two series of overlapping peptides (12- and 25-residue peptides) covering the entire S4 sequence by a panel of murine monoclonal anti-PT antibodies and various polyclonal anti-PT antisera in an enzyme-linked immunosorbent assay (ELISA), and (ii) analysis of the S4 amino acid sequence by a predictive algorithm followed by synthesis and immunization of mice with the predicted peptides coupled to diphtheria toxoid. The anti-peptide conjugate antisera were tested in an ELISA for cross-reactivity with native PT, B oligomer, and S4. Screening of the free peptides in an ELISA by the PT antisera indicated the presence of six B-cell epitope-containing domains covered by residues 18 to 32, 33 to 46, 39 to 52, 51 to 65, 71 to 84, and 91 to 106. None of the peptides, however, were recognized by the monoclonal anti-PT antibodies in an ELISA. Immunization with six computer-predicted peptides (B1 to B6) and three potential T-cell epitopes (T1 to T3) gave rise to very high antibody responses towards the homologous conjugates. With the exception of the anti-T1/diphtheria toxoid antisera, all anti-peptide conjugate antisera cross-reacted with PT in an ELISA at different levels. None of these anti-peptide conjugate antisera, however, showed any PT-neutralizing effect as measured by the Chinese hamster ovary cell assay and the leukocytosis-promoting activity test. The results of the present study suggest that discontinuous epitopes are predominant in the S4 subunit of native PT.

Full text

PDF
2408

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arciniega J. L., Burns D. L., Garcia-Ortigoza E., Manclark C. R. Immune response to the B oligomer of pertussis toxin. Infect Immun. 1987 May;55(5):1132–1136. doi: 10.1128/iai.55.5.1132-1136.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Askelöf P., Rodmalm K., Abens J., Undén A., Bartfai T. Use of synthetic peptides to map antigenic sites of Bordetella pertussis toxin subunit S1. J Infect Dis. 1988 Apr;157(4):738–742. doi: 10.1093/infdis/157.4.738. [DOI] [PubMed] [Google Scholar]
  3. Askelöf P., Rodmalm K., Wrangsell G., Larsson U., Svenson S. B., Cowell J. L., Undén A., Bartfai T. Protective immunogenicity of two synthetic peptides selected from the amino acid sequence of Bordetella pertussis toxin subunit S1. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1347–1351. doi: 10.1073/pnas.87.4.1347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Benjamin D. C., Berzofsky J. A., East I. J., Gurd F. R., Hannum C., Leach S. J., Margoliash E., Michael J. G., Miller A., Prager E. M. The antigenic structure of proteins: a reappraisal. Annu Rev Immunol. 1984;2:67–101. doi: 10.1146/annurev.iy.02.040184.000435. [DOI] [PubMed] [Google Scholar]
  5. Capiau C., Petre J., Van Damme J., Puype M., Vandekerckhove J. Protein-chemical analysis of pertussis toxin reveals homology between the subunits S2 and S3, between S1 and the A chains of enterotoxins of Vibrio cholerae and Escherichia coli and identifies S2 as the haptoglobin-binding subunit. FEBS Lett. 1986 Aug 18;204(2):336–340. doi: 10.1016/0014-5793(86)80839-0. [DOI] [PubMed] [Google Scholar]
  6. Cheetham J. C., Raleigh D. P., Griest R. E., Redfield C., Dobson C. M., Rees A. R. Antigen mobility in the combining site of an anti-peptide antibody. Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):7968–7972. doi: 10.1073/pnas.88.18.7968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. De Magistris M. T., Romano M., Bartoloni A., Rappuoli R., Tagliabue A. Human T cell clones define S1 subunit as the most immunogenic moiety of pertussis toxin and determine its epitope map. J Exp Med. 1989 May 1;169(5):1519–1532. doi: 10.1084/jem.169.5.1519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Geerligs H. J., Weijer W. J., Bloemhoff W., Welling G. W., Welling-Wester S. The influence of pH and ionic strength on the coating of peptides of herpes simplex virus type 1 in an enzyme-linked immunosorbent assay. J Immunol Methods. 1988 Feb 10;106(2):239–244. doi: 10.1016/0022-1759(88)90203-7. [DOI] [PubMed] [Google Scholar]
  9. Ghose A. C., Karush F. Induction of polyclonal and monoclonal antibody responses to cholera toxin by the synthetic peptide approach. Mol Immunol. 1988 Mar;25(3):223–230. doi: 10.1016/0161-5890(88)90013-2. [DOI] [PubMed] [Google Scholar]
  10. Halperin S. A., Issekutz T. B., Kasina A. Modulation of Bordetella pertussis infection with monoclonal antibodies to pertussis toxin. J Infect Dis. 1991 Feb;163(2):355–361. doi: 10.1093/infdis/163.2.355. [DOI] [PubMed] [Google Scholar]
  11. Hausman S. Z., Burns D. L., Sickler V. C., Manclark C. R. Immune response to dimeric subunits of the pertussis toxin B oligomer. Infect Immun. 1989 Jun;57(6):1760–1764. doi: 10.1128/iai.57.6.1760-1764.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kim K. J., McKinness S., Manclark C. R. Determination of T cell epitopes on the S1 subunit of pertussis toxin. J Immunol. 1990 May 1;144(9):3529–3534. [PubMed] [Google Scholar]
  13. Köhler G., Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975 Aug 7;256(5517):495–497. doi: 10.1038/256495a0. [DOI] [PubMed] [Google Scholar]
  14. Lang A. B., Ganss M. T., Cryz S. J., Jr Monoclonal antibodies that define neutralizing epitopes of pertussis toxin: conformational dependence and epitope mapping. Infect Immun. 1989 Sep;57(9):2660–2665. doi: 10.1128/iai.57.9.2660-2665.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Loosmore S. M., Zealey G. R., Boux H. A., Cockle S. A., Radika K., Fahim R. E., Zobrist G. J., Yacoob R. K., Chong P. C., Yao F. L. Engineering of genetically detoxified pertussis toxin analogs for development of a recombinant whooping cough vaccine. Infect Immun. 1990 Nov;58(11):3653–3662. doi: 10.1128/iai.58.11.3653-3662.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Margalit H., Spouge J. L., Cornette J. L., Cease K. B., Delisi C., Berzofsky J. A. Prediction of immunodominant helper T cell antigenic sites from the primary sequence. J Immunol. 1987 Apr 1;138(7):2213–2229. [PubMed] [Google Scholar]
  17. Meldal M., Holm C. B., Bojesen G., Jakobsen M. H., Holm A. Multiple column peptide synthesis, Part 2 (1, 2). Int J Pept Protein Res. 1993 Mar;41(3):250–260. doi: 10.1111/j.1399-3011.1993.tb00333.x. [DOI] [PubMed] [Google Scholar]
  18. Monack D., Munoz J. J., Peacock M. G., Black W. J., Falkow S. Expression of pertussis toxin correlates with pathogenesis in Bordetella species. J Infect Dis. 1989 Feb;159(2):205–210. doi: 10.1093/infdis/159.2.205. [DOI] [PubMed] [Google Scholar]
  19. Mouritsen S., Meldal M., Rubin B., Holm A., Werdelin O. The T-lymphocyte proliferative response to synthetic peptide antigens of defined secondary structure. Scand J Immunol. 1989 Dec;30(6):723–730. doi: 10.1111/j.1365-3083.1989.tb02482.x. [DOI] [PubMed] [Google Scholar]
  20. Munoz J. J., Arai H., Bergman R. K., Sadowski P. L. Biological activities of crystalline pertussigen from Bordetella pertussis. Infect Immun. 1981 Sep;33(3):820–826. doi: 10.1128/iai.33.3.820-826.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Munoz J. J., Arai H., Cole R. L. Mouse-protecting and histamine-sensitizing activities of pertussigen and fimbrial hemagglutinin from Bordetella pertussis. Infect Immun. 1981 Apr;32(1):243–250. doi: 10.1128/iai.32.1.243-250.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nencioni L., Pizza M., Bugnoli M., De Magistris T., Di Tommaso A., Giovannoni F., Manetti R., Marsili I., Matteucci G., Nucci D. Characterization of genetically inactivated pertussis toxin mutants: candidates for a new vaccine against whooping cough. Infect Immun. 1990 May;58(5):1308–1315. doi: 10.1128/iai.58.5.1308-1315.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nencioni L., Volpini G., Peppoloni S., Bugnoli M., De Magistris T., Marsili I., Rappuoli R. Properties of pertussis toxin mutant PT-9K/129G after formaldehyde treatment. Infect Immun. 1991 Feb;59(2):625–630. doi: 10.1128/iai.59.2.625-630.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nicosia A., Perugini M., Franzini C., Casagli M. C., Borri M. G., Antoni G., Almoni M., Neri P., Ratti G., Rappuoli R. Cloning and sequencing of the pertussis toxin genes: operon structure and gene duplication. Proc Natl Acad Sci U S A. 1986 Jul;83(13):4631–4635. doi: 10.1073/pnas.83.13.4631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Oksenberg J. R., Ko C., Judd A. K., Lim M., Kent A., Schoolnik G. K., Steinman L. Multiple T and B cell epitopes in the S1 subunit ("A"-monomer) of the pertussis toxin molecule. J Immunol. 1989 Dec 15;143(12):4227–4231. [PubMed] [Google Scholar]
  26. Parker J. M., Guo D., Hodges R. S. New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites. Biochemistry. 1986 Sep 23;25(19):5425–5432. doi: 10.1021/bi00367a013. [DOI] [PubMed] [Google Scholar]
  27. Petersen J. W., Holm A., Ibsen P. H., Hasløv K., Capiau C., Heron I. Identification of human T-cell epitopes on the S4 subunit of pertussis toxin. Infect Immun. 1992 Oct;60(10):3962–3970. doi: 10.1128/iai.60.10.3962-3970.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Petersen J. W., Holm A., Ibsen P. H., Hasløv K., Heron I. Identification of murine T-cell epitopes on the S4 subunit of pertussis toxin. Infect Immun. 1993 Jan;61(1):56–63. doi: 10.1128/iai.61.1.56-63.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pittman M. The concept of pertussis as a toxin-mediated disease. Pediatr Infect Dis. 1984 Sep-Oct;3(5):467–486. doi: 10.1097/00006454-198409000-00019. [DOI] [PubMed] [Google Scholar]
  30. Pizza M., Covacci A., Bartoloni A., Perugini M., Nencioni L., De Magistris M. T., Villa L., Nucci D., Manetti R., Bugnoli M. Mutants of pertussis toxin suitable for vaccine development. Science. 1989 Oct 27;246(4929):497–500. doi: 10.1126/science.2683073. [DOI] [PubMed] [Google Scholar]
  31. Presentini R., Perin F., Ancilli G., Nucci D., Bartoloni A., Rappuoli R., Antoni G. Studies of the antigenic structure of two cross-reacting proteins, pertussis and cholera toxins, using synthetic peptides. Mol Immunol. 1989 Jan;26(1):95–100. doi: 10.1016/0161-5890(89)90025-4. [DOI] [PubMed] [Google Scholar]
  32. Quentin-Millet M. J., Arminjon F., Danve B., Cadoz M., Armand J. Acellular pertussis vaccines: evaluation of reversion in a nude mouse model. J Biol Stand. 1988 Apr;16(2):99–108. doi: 10.1016/0092-1157(88)90037-6. [DOI] [PubMed] [Google Scholar]
  33. Sato H., Sato Y., Ohishi I. Comparison of pertussis toxin (PT)-neutralizing activities and mouse-protective activities of anti-PT mouse monoclonal antibodies. Infect Immun. 1991 Oct;59(10):3832–3835. doi: 10.1128/iai.59.10.3832-3835.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Schmidt M. A., Raupach B., Szulczynski M., Marzillier J. Identification of linear B-cell determinants of pertussis toxin associated with the receptor recognition site of the S3 subunit. Infect Immun. 1991 Apr;59(4):1402–1408. doi: 10.1128/iai.59.4.1402-1408.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Schmidt M. A., Schmidt W. Inhibition of pertussis toxin binding to model receptors by antipeptide antibodies directed at an antigenic domain of the S2 subunit. Infect Immun. 1989 Dec;57(12):3828–3833. doi: 10.1128/iai.57.12.3828-3833.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Schmidt W., Schmidt M. A. Mapping of linear B-cell epitopes of the S2 subunit of pertussis toxin. Infect Immun. 1989 Feb;57(2):438–445. doi: 10.1128/iai.57.2.438-445.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Schou C., Au-Jensen M., Heron I. The interaction between pertussis toxin and 10 monoclonal antibodies. Acta Pathol Microbiol Immunol Scand C. 1987 Oct;95(5):177–187. doi: 10.1111/j.1699-0463.1987.tb00028.x. [DOI] [PubMed] [Google Scholar]
  38. Seabrook R. N., Robinson A., Sharma R. P., Irons L. I., Ashworth L. A., Price C. P., Atkinson T. Recognition of pertussis toxin by antibodies to synthetic peptides. Mol Immunol. 1990 Aug;27(8):777–785. doi: 10.1016/0161-5890(90)90087-g. [DOI] [PubMed] [Google Scholar]
  39. Sekura R. D., Fish F., Manclark C. R., Meade B., Zhang Y. L. Pertussis toxin. Affinity purification of a new ADP-ribosyltransferase. J Biol Chem. 1983 Dec 10;258(23):14647–14651. [PubMed] [Google Scholar]
  40. Sekura R. D., Zhang Y. L., Roberson R., Acton B., Trollfors B., Tolson N., Shiloach J., Bryla D., Muir-Nash J., Koeller D. Clinical, metabolic, and antibody responses of adult volunteers to an investigational vaccine composed of pertussis toxin inactivated by hydrogen peroxide. J Pediatr. 1988 Nov;113(5):806–813. doi: 10.1016/s0022-3476(88)80005-2. [DOI] [PubMed] [Google Scholar]
  41. Shahin R. D., Witvliet M. H., Manclark C. R. Mechanism of pertussis toxin B oligomer-mediated protection against Bordetella pertussis respiratory infection. Infect Immun. 1990 Dec;58(12):4063–4068. doi: 10.1128/iai.58.12.4063-4068.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Storsaeter J., Olin P., Renemar B., Lagergård T., Norberg R., Romanus V., Tiru M. Mortality and morbidity from invasive bacterial infections during a clinical trial of acellular pertussis vaccines in Sweden. Pediatr Infect Dis J. 1988 Sep;7(9):637–645. doi: 10.1097/00006454-198809000-00008. [DOI] [PubMed] [Google Scholar]
  43. Strynadka N. C., Redmond M. J., Parker J. M., Scraba D. G., Hodges R. S. Use of synthetic peptides to map the antigenic determinants of glycoprotein D of herpes simplex virus. J Virol. 1988 Sep;62(9):3474–3483. doi: 10.1128/jvi.62.9.3474-3483.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Talbot P. J., Dionne G., Lacroix M. Vaccination against lethal coronavirus-induced encephalitis with a synthetic decapeptide homologous to a domain in the predicted peplomer stalk. J Virol. 1988 Aug;62(8):3032–3036. doi: 10.1128/jvi.62.8.3032-3036.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Tamura M., Nogimori K., Yajima M., Ase K., Ui M. A role of the B-oligomer moiety of islet-activating protein, pertussis toxin, in development of the biological effects on intact cells. J Biol Chem. 1983 Jun 10;258(11):6756–6761. [PubMed] [Google Scholar]
  46. Thomas M. G., Redhead K., Lambert H. P. Human serum antibody responses to Bordetella pertussis infection and pertussis vaccination. J Infect Dis. 1989 Feb;159(2):211–218. doi: 10.1093/infdis/159.2.211. [DOI] [PubMed] [Google Scholar]
  47. Walker M. J., Wehland J., Timmis K. N., Raupach B., Schmidt M. A. Characterization of murine monoclonal antibodies that recognize defined epitopes of pertussis toxin and neutralize its toxic effect on Chinese hamster ovary cells. Infect Immun. 1991 Nov;59(11):4249–4251. doi: 10.1128/iai.59.11.4249-4251.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Weijer W. J., Drijfhout J. W., Geerligs H. J., Bloemhoff W., Feijlbrief M., Bos C. A., Hoogerhout P., Kerling K. E., Popken-Boer T., Slopsema K. Antibodies against synthetic peptides of herpes simplex virus type 1 glycoprotein D and their capability to neutralize viral infectivity in vitro. J Virol. 1988 Feb;62(2):501–510. doi: 10.1128/jvi.62.2.501-510.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Weiss A. A., Hewlett E. L. Virulence factors of Bordetella pertussis. Annu Rev Microbiol. 1986;40:661–686. doi: 10.1146/annurev.mi.40.100186.003305. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES