Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1993 Aug;61(8):3412–3415. doi: 10.1128/iai.61.8.3412-3415.1993

Effect of gamma interferon on phospholipid hydrolysis and fatty acid incorporation in L929 cells infected with Rickettsia prowazekii.

H H Winkler 1, L Day 1, R Daugherty 1, J Turco 1
PMCID: PMC281017  PMID: 8335370

Abstract

Treatment of Rickettsia prowazekii-infected L929 cells with gamma interferon (IFN-gamma) immediately after infection altered the lipid metabolism of the host cells as determined by measurement of phospholipid hydrolysis and oleic acid incorporation into phospholipids and neutral lipids. At 48 h postinfection, there was increased phospholipid hydrolysis in infected cultures relative to mock-infected cultures and a further increase in radiolabeled phospholipid hydrolysis in IFN-gamma-treated infected cultures. Oleic acid, the radiolabeled product of hydrolysis, was found in both the free fatty acid and neutral lipid fractions. None of the mock-infected cultures demonstrated increased hydrolysis of their radiolabeled phospholipids in response to treatment with IFN-gamma. Most of the radiolabeled oleic acid incorporated into cultures in the interval between 24 and 48 h after infection and IFN-gamma treatment was present in the phospholipid fraction. However, the neutral lipid fraction from the infected cultures that had been IFN-gamma treated was labeled to a greater extent than that from the untreated cultures. Thin-layer chromatographic analysis of the neutral lipid fractions from both the hydrolysis and incorporation experiments demonstrated that most of the radiolabel was in triglycerides. The infected cultures at 30 h were intact as assessed by the exclusion of trypan blue, but at 48 h postinfection in the IFN-gamma-treated infected cultures more than half of the cells were unable to exclude trypan blue. In no case did the mock-infected cells show substantial damage as a result of IFN-gamma treatment.

Full text

PDF
3412

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  2. Bomalaski J. S., Freundlich B., Steiner S., Clark M. A. The role of fatty acid metabolites in the differentiation of the human monocyte-like cell line U937. J Leukoc Biol. 1988 Jul;44(1):51–57. doi: 10.1002/jlb.44.1.51. [DOI] [PubMed] [Google Scholar]
  3. Boraschi D., Censini S., Bartalini M., Scapigliati G., Barbarulli G., Vicenzi E., Donati M. B., Tagliabue A. Interferon inhibits prostaglandin biosynthesis in macrophages: effects on arachidonic acid metabolism. J Immunol. 1984 Apr;132(4):1987–1992. [PubMed] [Google Scholar]
  4. Boraschi D., Censini S., Bartalini M., Tagliabue A. Regulation of arachidonic acid metabolism in macrophages by immune and nonimmune interferons. J Immunol. 1985 Jul;135(1):502–505. [PubMed] [Google Scholar]
  5. Dore-Duffy P., Perry W., Kuo H. H. Interferon-mediated inhibition of prostaglandin synthesis in human mononuclear leukocytes. Cell Immunol. 1983 Jul 15;79(2):232–239. doi: 10.1016/0008-8749(83)90066-7. [DOI] [PubMed] [Google Scholar]
  6. Eldor A., Vlodavsky I., Hy-Am E., Atzmon R., Weksler B. B., Raz A., Fuks Z. Cultured endothelial cells increase their capacity to synthesize prostacyclin following the formation of a contact inhibited cell monolayer. J Cell Physiol. 1983 Feb;114(2):179–183. doi: 10.1002/jcp.1041140206. [DOI] [PubMed] [Google Scholar]
  7. Furlong S. T., Mednis A., Remold H. G. Interferon-gamma stimulates lipid metabolism in human monocytes. Cell Immunol. 1992 Aug;143(1):108–117. doi: 10.1016/0008-8749(92)90009-e. [DOI] [PubMed] [Google Scholar]
  8. Fuse A., Mahmud I., Kuwata T. Mechanism of stimulation by human interferon of prostaglandin synthesis in human cell lines. Cancer Res. 1982 Aug;42(8):3209–3214. [PubMed] [Google Scholar]
  9. GIMENEZ D. F. STAINING RICKETTSIAE IN YOLK-SAC CULTURES. Stain Technol. 1964 May;39:135–140. doi: 10.3109/10520296409061219. [DOI] [PubMed] [Google Scholar]
  10. Koike K., Hirota K., Ohmichi M., Kadowaki K., Ikegami H., Yamaguchi M., Miyake A., Tanizawa O. Tumor necrosis factor-alpha increases release of arachidonate and prolactin from rat anterior pituitary cells. Endocrinology. 1991 Jun;128(6):2791–2798. doi: 10.1210/endo-128-6-2791. [DOI] [PubMed] [Google Scholar]
  11. Ponzoni M., Montaldo P. G., Cornaglia-Ferraris P. Stimulation of receptor-coupled phospholipase A2 by interferon-gamma. FEBS Lett. 1992 Sep 21;310(1):17–21. doi: 10.1016/0014-5793(92)81136-a. [DOI] [PubMed] [Google Scholar]
  12. Premecz G., Markovits A., Bagi G., Farkas T., Földes I. Phospholipase C and phospholipase A2 are involved in the antiviral activity of human interferon-alpha. FEBS Lett. 1989 Jun 5;249(2):257–260. doi: 10.1016/0014-5793(89)80635-0. [DOI] [PubMed] [Google Scholar]
  13. Turco J., Keysary A., Winkler H. H. Interferon-gamma- and rickettsia-induced killing of macrophage-like cells is inhibited by anti-rickettsial antibodies and does not require the respiratory burst. J Interferon Res. 1989 Oct;9(5):615–629. doi: 10.1089/jir.1989.9.615. [DOI] [PubMed] [Google Scholar]
  14. Turco J., Winkler H. H. Cloned mouse interferon-gamma inhibits the growth of Rickettsia prowazekii in cultured mouse fibroblasts. J Exp Med. 1983 Dec 1;158(6):2159–2164. doi: 10.1084/jem.158.6.2159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Turco J., Winkler H. H. Comparison of the properties of antirickettsial activity and interferon in mouse lymphokines. Infect Immun. 1983 Oct;42(1):27–32. doi: 10.1128/iai.42.1.27-32.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Turco J., Winkler H. H. Effect of mouse lymphokines and cloned mouse interferon-gamma on the interaction of Rickettsia prowazekii with mouse macrophage-like RAW264.7 cells. Infect Immun. 1984 Aug;45(2):303–308. doi: 10.1128/iai.45.2.303-308.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Turco J., Winkler H. H. Gamma-interferon-induced inhibition of the growth of Rickettsia prowazekii in fibroblasts cannot be explained by the degradation of tryptophan or other amino acids. Infect Immun. 1986 Jul;53(1):38–46. doi: 10.1128/iai.53.1.38-46.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Turco J., Winkler H. H. Inhibition of the growth of Rickettsia prowazekii in cultured fibroblasts by lymphokines. J Exp Med. 1983 Mar 1;157(3):974–986. doi: 10.1084/jem.157.3.974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Turco J., Winkler H. H. Selection of alpha/beta interferon- and gamma interferon-resistant rickettsiae by passage of Rickettsia prowazekii in L929 cells. Infect Immun. 1990 Oct;58(10):3279–3285. doi: 10.1128/iai.58.10.3279-3285.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wahl L. M., Corcoran M. E., Mergenhagen S. E., Finbloom D. S. Inhibition of phospholipase activity in human monocytes by IFN-gamma blocks endogenous prostaglandin E2-dependent collagenase production. J Immunol. 1990 May 1;144(9):3518–3522. [PubMed] [Google Scholar]
  21. Walker T. S., Winkler H. H. Rickettsial hemolysis: rapid method for enumeration of metabolically active typhus rickettsiae. J Clin Microbiol. 1979 May;9(5):645–647. doi: 10.1128/jcm.9.5.645-647.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Winkler H. H., Daugherty R. M. Phospholipase A activity associated with the growth of Rickettsia prowazekii in L929 cells. Infect Immun. 1989 Jan;57(1):36–40. doi: 10.1128/iai.57.1.36-40.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Winkler H. H. Early events in the interaction of the obligate intracytoplasmic parasite, Rickettsia prowazekii, with eucaryotic cells: entry and lysis. Ann Inst Pasteur Microbiol. 1986 May-Jun;137A(3):333–336. doi: 10.1016/s0769-2609(86)80044-8. [DOI] [PubMed] [Google Scholar]
  24. Winkler H. H., Miller E. T. Phospholipase A activity in the hemolysis of sheep and human erythrocytes by Rickettsia prowazeki. Infect Immun. 1980 Aug;29(2):316–321. doi: 10.1128/iai.29.2.316-321.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Winkler H. H., Miller E. T. Phospholipase A and the interaction of Rickettsia prowazekii and mouse fibroblasts (L-929 cells). Infect Immun. 1982 Oct;38(1):109–113. doi: 10.1128/iai.38.1.109-113.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wisseman C. L., Jr, Waddell A. Interferonlike factors from antigen- and mitogen-stimulated human leukocytes with antirickettsial and cytolytic actions on Rickettsia prowazekii. Infected human endothelial cells, fibroblasts, and macrophages. J Exp Med. 1983 Jun 1;157(6):1780–1793. doi: 10.1084/jem.157.6.1780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Yaron M., Yaron I., Gurari-Rotman D., Revel M., Lindner H. R., Zor U. Stimulation of prostaglandin E production in cultured human fibroblasts by poly(I)-poly(C) and human interferon. Nature. 1977 Jun 2;267(5610):457–459. doi: 10.1038/267457a0. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES