Skip to main content
Microbiological Reviews logoLink to Microbiological Reviews
. 1979 Mar;43(1):59–72. doi: 10.1128/mr.43.1.59-72.1979

Microbial cooxidations involving hydrocarbons.

J J Perry
PMCID: PMC281462  PMID: 379578

Full text

PDF
59

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander M. Biodegradation: problems of molecular recalcitrance and microbial fallibility. Adv Appl Microbiol. 1965;7:35–80. doi: 10.1016/s0065-2164(08)70383-6. [DOI] [PubMed] [Google Scholar]
  2. Beam H. W., Perry J. J. Co-metabolism as a factor in microbial degradation of cycloparaffinic hydrocarbons. Arch Mikrobiol. 1973 Apr 8;91(1):87–90. doi: 10.1007/BF00409542. [DOI] [PubMed] [Google Scholar]
  3. Bird C. W., Molton P. The biochemical status of metabolites of alkane-utilizing Pseudomonas organisms. Biochem J. 1969 Oct;114(4):881–884. doi: 10.1042/bj1140881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blevins W. T., Perry J. J. Efficiency of a soil Mycobacterium during growth on hydrocarbons and related substrates. Z Allg Mikrobiol. 1971;11(3):181–190. doi: 10.1002/jobm.3630110302. [DOI] [PubMed] [Google Scholar]
  5. CHASE H. H., DAVIS J. B., RAYMOND R. L. Mycobacterium paraffinicum n. sp., a bacterium isolated from soil. Appl Microbiol. 1956 Nov;4(6):310–315. doi: 10.1128/am.4.6.310-315.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Colby J., Stirling D. I., Dalton H. The soluble methane mono-oxygenase of Methylococcus capsulatus (Bath). Its ability to oxygenate n-alkanes, n-alkenes, ethers, and alicyclic, aromatic and heterocyclic compounds. Biochem J. 1977 Aug 1;165(2):395–402. doi: 10.1042/bj1650395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DAVIS J. B., RAYMOND R. L. Oxidation of alkyl-substituted cyclic hydrocarbons by a Nocardia during growth on n-alkanes. Appl Microbiol. 1961 Sep;9:383–388. doi: 10.1128/am.9.5.383-388.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. FOSTER J. W. Hydrocarbons as substrates for microorganisms. Antonie Van Leeuwenhoek. 1962;28:241–274. doi: 10.1007/BF02538739. [DOI] [PubMed] [Google Scholar]
  9. Ferenci T., Strom T., Quayle J. R. Oxidation of carbon monoxide and methane by Pseudomonas methanica. J Gen Microbiol. 1975 Nov;91(1):79–91. doi: 10.1099/00221287-91-1-79. [DOI] [PubMed] [Google Scholar]
  10. Francis A. J., Spanggord R. J., Ouchi G. I., Bohonos N. Cometabolism of DDT analogs by a Pseudomonas sp. Appl Environ Microbiol. 1978 Feb;35(2):364–367. doi: 10.1128/aem.35.2.364-367.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gibson D. T., Koch J. R., Schuld C. L., Kallio R. E. Oxidative degradation of aromatic hydrocarbons by microorganisms. II. Metabolism of halogenated aromatic hydrocarbons. Biochemistry. 1968 Nov;7(11):3795–3802. doi: 10.1021/bi00851a003. [DOI] [PubMed] [Google Scholar]
  12. HANSEN R. W., KALLIO R. E. Inability of nitrate to serve as a terminal oxidant for hydrocarbons. Science. 1957 Jun 14;125(3259):1198–1199. doi: 10.1126/science.125.3259.1198. [DOI] [PubMed] [Google Scholar]
  13. HARRIS J. O. Respiration studies of a Micrococcus capable of oxidizing hydrocarbons. Arch Biochem Biophys. 1957 Aug;70(2):457–463. doi: 10.1016/0003-9861(57)90134-0. [DOI] [PubMed] [Google Scholar]
  14. Haider K., Jagnow G., Kohnen R., Lim S. U. Abbau chlorierter Benzole, Phenole und Cyclohexan-Derivate durch Benzol und Phenol verwertende Bodenbakterien unter aeroben Bedingungen. Arch Microbiol. 1974 Mar 7;96(3):183–200. doi: 10.1007/BF00590175. [DOI] [PubMed] [Google Scholar]
  15. Higgins I. J., Quayle J. R. Oxygenation of methane by methane-grown Pseudomonas methanica and Methanomonas methanooxidans. Biochem J. 1970 Jun;118(2):201–208. doi: 10.1042/bj1180201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Horvath R. S. Microbial co-metabolism and the degradation of organic compounds in nature. Bacteriol Rev. 1972 Jun;36(2):146–155. doi: 10.1128/br.36.2.146-155.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hubley J. H., Mitton J. R., Wilkinson J. F. The oxidation of carbon monoxide by methane-oxidizing bacteria. Arch Mikrobiol. 1974 Feb 13;95(4):365–368. doi: 10.1007/BF02451778. [DOI] [PubMed] [Google Scholar]
  18. Hulbert M. H. Cometabolism: a critique. J Theor Biol. 1977 Nov 21;69(2):287–291. doi: 10.1016/0022-5193(77)90137-0. [DOI] [PubMed] [Google Scholar]
  19. Iizuka H., Lin H. T., Iida M. Ester formation from n-alkanes by fungi isolated from aircraft fuel. Z Allg Mikrobiol. 1970;10(3):189–196. [PubMed] [Google Scholar]
  20. Jamison V. W., Raymond R. L., Hudson J. O. Microbial Hydrocarbon Co-oxidation. III. Isolation and Characterization of an alpha, alpha'-Dimethyl-cis, cis-Muconic Acid-producing Strain of Nocardia corallina. Appl Microbiol. 1969 Jun;17(6):853–856. doi: 10.1128/am.17.6.853-856.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. KESTER A. S., FOSTER J. W. DITERMINAL OXIDATION OF LONG-CHAIN ALKANES BY BACTERIA. J Bacteriol. 1963 Apr;85:859–869. doi: 10.1128/jb.85.4.859-869.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Klein D. A. Growth of an aquatic-derived bacterium in the presence of long-chained alkanes. Appl Microbiol. 1968 Feb;16(2):421–422. doi: 10.1128/am.16.2.421-422.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Krauel H., Kunze R., Weide H. Bildung von Dicarbonsäuren durch Candida guilliermondii, Stamm H 17, aus n-Alkanen. Z Allg Mikrobiol. 1973;13(1):55–58. doi: 10.1002/jobm.3630130105. [DOI] [PubMed] [Google Scholar]
  24. Kusunose M., Ichihara K., Kusunose E. Oxidation of n-hexadecane by mouse liver microsomal fraction. Biochim Biophys Acta. 1969 Apr 29;176(3):679–681. [PubMed] [Google Scholar]
  25. LEADBETTER E. R., FOSTER J. W. Bacterial oxidation of gaseous alkanes. Arch Mikrobiol. 1960;35:92–104. doi: 10.1007/BF00425597. [DOI] [PubMed] [Google Scholar]
  26. LEADBETTER E. R., FOSTER J. W. Incorporation of molecular oxygen in bacterial cells utilizing hydrocarbons for growth. Nature. 1959 Oct 31;184(Suppl 18):1428–1429. doi: 10.1038/1841428a0. [DOI] [PubMed] [Google Scholar]
  27. LEADBETTER E. R., FOSTER J. W. Oxidation products formed from gaseous alkanes by the bacterium Pseudomonas methanica. Arch Biochem Biophys. 1959 Jun;82(2):491–492. doi: 10.1016/0003-9861(59)90154-7. [DOI] [PubMed] [Google Scholar]
  28. LUKINS H. B., FOSTER J. W. METHYL KETONE METABOLISM IN HYDROCARBON-UTILIZING MYCOBACTERIA. J Bacteriol. 1963 May;85:1074–1087. doi: 10.1128/jb.85.5.1074-1087.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. MCCARTHY R. D. MAMMALIAN METABOLISM OF STRAIGHT-CHAIN SATURATED HYDROCARBONS. Biochim Biophys Acta. 1964 Feb 24;84:74–79. doi: 10.1016/0926-6542(64)90102-7. [DOI] [PubMed] [Google Scholar]
  30. Merkel G. J., Perry J. J. Increased cooxidative biodegradation of malathion in soil via cosubstrate enrichment. J Agric Food Chem. 1977 Sep-Oct;25(5):1011–1012. doi: 10.1021/jf60213a019. [DOI] [PubMed] [Google Scholar]
  31. OOYAMA J., FOSTER J. W. BACTERIAL OXIDATION OF CYCLOPARAFFINIC HYDROCARBONS. Antonie Van Leeuwenhoek. 1965;31:45–65. doi: 10.1007/BF02045875. [DOI] [PubMed] [Google Scholar]
  32. Pelz B. F., Rehm H. J. Isolierung, Substratassimilation und einige Produkete alkanabbauender Schimmelpilze. Arch Mikrobiol. 1972;84(1):20–28. [PubMed] [Google Scholar]
  33. Perry J. J., Scheld H. W. Oxidation of hydrocarbons by microorganisms isolated from soil. Can J Microbiol. 1968 Apr;14(4):403–407. doi: 10.1139/m68-064. [DOI] [PubMed] [Google Scholar]
  34. RAYMOND R. L., DAVIS J. B. n-Alkane utilization and lipid formation by a Nocardia. Appl Microbiol. 1960 Nov;8:329–334. doi: 10.1128/am.8.6.329-334.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. ROBINSON D. S. OXIDATION OF SELECTED ALKANES AND RELATED COMPOUNDS BY A PSEUDOMONAS STRAIN. Antonie Van Leeuwenhoek. 1964;30:303–316. doi: 10.1007/BF02046736. [DOI] [PubMed] [Google Scholar]
  36. Raymond R. L., Jamison V. W., Hudson J. O. Hydrocarbon cooxidation in microbial systems. Lipids. 1971 Jul;6(7):453–457. doi: 10.1007/BF02531228. [DOI] [PubMed] [Google Scholar]
  37. Raymond R. L., Jamison V. W., Hudson J. O. Microbial hydrocarbon co-oxidation. I. Oxidation of mono- and dicyclic hydrocarbons by soil isolates of the genus Nocardia. Appl Microbiol. 1967 Jul;15(4):857–865. doi: 10.1128/am.15.4.857-865.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Raymond R. L., Jamison V. W., Hudson J. O. Microbial hydrocarbon co-oxidation. II. Use of ion-exchange resins. Appl Microbiol. 1969 Apr;17(4):512–515. doi: 10.1128/am.17.4.512-515.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. STEVENSON D. P., FINNERTY W. R., KALLIO R. E. Esters produced from n-heptadecane by Micrococcus cerificans. Biochem Biophys Res Commun. 1962 Nov 27;9:426–429. doi: 10.1016/0006-291x(62)90028-1. [DOI] [PubMed] [Google Scholar]
  40. STEWART J. E., KALLIO R. E. Bacterial hydrocarbon oxidation. II. Ester formation from alkanes. J Bacteriol. 1959 Nov;78:726–730. doi: 10.1128/jb.78.5.726-730.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. STEWART J. E., KALLIO R. E., STEVENSON D. P., JONES A. C., SCHISSLER D. O. Bacterial hydrocarbon oxidation. I. Oxidation of n-hexadecane by a gram-negative coccus. J Bacteriol. 1959 Sep;78:441–448. doi: 10.1128/jb.78.3.441-448.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Sagardía F., Rigau J. J., Martínez-Lahoz A., Fuentes F., López C., Flores W. Degradation of benzothiophene and related compounds by a soil Pseudomonas in an oil-aqueous environment. Appl Microbiol. 1975 Jun;29(6):722–725. doi: 10.1128/am.29.6.722-725.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Shaw R. Microbiological oxidation of cyclic ketones. Nature. 1966 Mar 26;209(5030):1369–1369. doi: 10.1038/2091369a0. [DOI] [PubMed] [Google Scholar]
  44. Shriabin G. K., Starovoitov I. I., Golovleva L. A. Mikrobiologicheskii sposob polucheniia 2,6-naftalindikarbonovoi kisloty v sookislitel'nykh usloviiakh. Dokl Akad Nauk SSSR. 1972 Feb 1;202(4):973–974. [PubMed] [Google Scholar]
  45. Skriabin G. K., Golovleva L. A., Golovlev E. L. Transformatsiia aromaticheskikh uglevodorodov v sookislitel'nykh usloviiakh. Izv Akad Nauk SSSR Biol. 1972 Jan-Feb;1:50–57. [PubMed] [Google Scholar]
  46. Skriabin G. K., Golovleva L. A. Mikrobiologicheskaia transformatsiia organicheskikh soedinenii v sookislitel'nykh usloviiakh. Izv Akad Nauk SSSR Biol. 1972 Mar-Apr;2:232–244. [PubMed] [Google Scholar]
  47. Vary P. S., Johnson M. J. Cell yields of bacteria grown on methane. Appl Microbiol. 1967 Nov;15(6):1473–1478. doi: 10.1128/am.15.6.1473-1478.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Whittenbury R., Phillips K. C., Wilkinson J. F. Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol. 1970 May;61(2):205–218. doi: 10.1099/00221287-61-2-205. [DOI] [PubMed] [Google Scholar]
  49. Wilkinson T. G., Topiwala H. H., Hamer G. Interactions in a mixed bacterial population growing on methane in continuous culture. Biotechnol Bioeng. 1974 Jan;16(1):41–59. doi: 10.1002/bit.260160105. [DOI] [PubMed] [Google Scholar]
  50. de Klerk H., van der Linden A. C. Bacterial degradation of cyclohexane. Participation of a co-oxidation reaction. Antonie Van Leeuwenhoek. 1974;40(1):7–15. doi: 10.1007/BF00394548. [DOI] [PubMed] [Google Scholar]
  51. van Eyk J., Bartels T. J. Paraffin oxidation in Pseudomonas aeruginosa. I. Induction of paraffin oxidation. J Bacteriol. 1968 Sep;96(3):706–712. doi: 10.1128/jb.96.3.706-712.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. van der Linden A. C., Thijsse G. J. The mechanisms of microbial oxidations of petroleum hydrocarbons. Adv Enzymol Relat Areas Mol Biol. 1965;27:469–546. doi: 10.1002/9780470122723.ch10. [DOI] [PubMed] [Google Scholar]

Articles from Microbiological Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES