Skip to main content
Microbiological Reviews logoLink to Microbiological Reviews
. 1981 Dec;45(4):620–642. doi: 10.1128/mr.45.4.620-642.1981

Cyclic nucleotides in procaryotes.

J L Botsford
PMCID: PMC281530  PMID: 6276705

Full text

PDF
642

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abou-Sabé M., Burday M., Gentsch J. On the regulation of adenosine 3', 5'-monophosphate synthesis in bacteria. I. Effect of carbon source variation on cyclic AMP synthesis in Escherichia coli B/r. Biochim Biophys Acta. 1975 Apr 7;385(2):281–293. doi: 10.1016/0304-4165(75)90356-6. [DOI] [PubMed] [Google Scholar]
  2. Ackerman R. S., Cozzarelli N. R., Epstein W. Accumulation of toxic concentrations of methylglyoxal by wild-type Escherichia coli K-12. J Bacteriol. 1974 Aug;119(2):357–362. doi: 10.1128/jb.119.2.357-362.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Adachi T., Okamura H., Murooka Y., Harada T. Catabolite repression and derepression of arylsulfatase synthesis in Klebsiella aerogenes. J Bacteriol. 1974 Nov;120(2):880–885. doi: 10.1128/jb.120.2.880-885.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Adhya S., Gottesman M. Control of transcription termination. Annu Rev Biochem. 1978;47:967–996. doi: 10.1146/annurev.bi.47.070178.004535. [DOI] [PubMed] [Google Scholar]
  5. Adhya S., Miller W. Modulation of the two promoters of the galactose operon of Escherichia coli. Nature. 1979 Jun 7;279(5713):492–494. doi: 10.1038/279492a0. [DOI] [PubMed] [Google Scholar]
  6. Adler J., Epstein W. Phosphotransferase-system enzymes as chemoreceptors for certain sugars in Escherichia coli chemotaxis. Proc Natl Acad Sci U S A. 1974 Jul;71(7):2895–2899. doi: 10.1073/pnas.71.7.2895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Alderman E. M., Dills S. S., Melton T., Dobrogosz W. J. Cyclic adenosine 3',5'-monophosphate regulation of the bacteriophage T6/colicin K receptor in Escherichia coli. J Bacteriol. 1979 Nov;140(2):369–376. doi: 10.1128/jb.140.2.369-376.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Alper M. D., Ames B. N. Cyclic 3', 5'-adenosine monophosphate phosphodiesterase mutants of Salmonella typhimurium. J Bacteriol. 1975 Jun;122(3):1081–1090. doi: 10.1128/jb.122.3.1081-1090.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Alper M. D., Ames B. N. Transport of antibiotics and metabolite analogs by systems under cyclic AMP control: positive selection of Salmonella typhimurium cya and crp mutants. J Bacteriol. 1978 Jan;133(1):149–157. doi: 10.1128/jb.133.1.149-157.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Andersen K., Shanmugam K. T. Energetics of biological nitrogen fixation: determination of the ratio of formation of H2 to NH4+ catalysed by nitrogenase of Klebsiella pneumoniae in vivo. J Gen Microbiol. 1977 Nov;103(1):107–122. doi: 10.1099/00221287-103-1-107. [DOI] [PubMed] [Google Scholar]
  11. Anderson W. B., Pastan I. The cyclic AMP receptor of Escherichia coli: immunological studies in extracts of Escherichia coli and other organisms. Biochim Biophys Acta. 1973 Oct 5;320(3):577–587. doi: 10.1016/0304-4165(73)90137-2. [DOI] [PubMed] [Google Scholar]
  12. Aono R., Yamasaki M., Tamura G. Changes in composition of envelope proteins in adenylate cyclase- or cyclic AMP receptor protein-deficient mutants of Escherichia coli. J Bacteriol. 1978 Nov;136(2):812–814. doi: 10.1128/jb.136.2.812-814.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Aono R., Yamasaki M., Tamura G. High and selective resistance to mecillinam in adenylate cyclase-deficient or cyclic adenosine 3',5'-monophosphate receptor protein-deficient mutants of Escherichia coli. J Bacteriol. 1979 Feb;137(2):839–845. doi: 10.1128/jb.137.2.839-845.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Artman M., Werthamer S. Effect of cyclic guanosine 3,5-monophosphate on the synthesis of enzymes sensitive to caatabolite repression in intact cells of Escherichia coli. J Bacteriol. 1974 Nov;120(2):980–983. doi: 10.1128/jb.120.2.980-983.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Artman M., Werthamer S., Gelb P. Streptomycin lethality and cyclic AMP. Biochem Biophys Res Commun. 1972 Oct 17;49(2):488–494. doi: 10.1016/0006-291x(72)90437-8. [DOI] [PubMed] [Google Scholar]
  16. Artman M., Werthamer S. Use of streptomycin and cyclic adenosine 5'-monophosphate in the isolation of mutants deficient in CAP protein. J Bacteriol. 1974 Oct;120(1):542–544. doi: 10.1128/jb.120.1.542-544.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Artz S. W., Broach J. R. Histidine regulation in Salmonella typhimurium: an activator attenuator model of gene regulation. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3453–3457. doi: 10.1073/pnas.72.9.3453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Benson C. E., Brehmeyer B. A., Gots J. S. Requirement of cyclic AMP for induction of GMP reductase in Escherichia coli. Biochem Biophys Res Commun. 1971 Jun 4;43(5):1089–1094. doi: 10.1016/0006-291x(71)90573-0. [DOI] [PubMed] [Google Scholar]
  19. Bernlohr R. W., Haddox M. K., Goldberg N. D. Cyclic guanosine 3':5'-monophosphate in Escherichia coli and Bacillus lichenformis. J Biol Chem. 1974 Jul 10;249(13):4329–4331. [PubMed] [Google Scholar]
  20. Black R. A., Hobson A. C., Adler J. Involvement of cyclic GMP in intracellular signaling in the chemotactic response of Escherichia coli. Proc Natl Acad Sci U S A. 1980 Jul;77(7):3879–3883. doi: 10.1073/pnas.77.7.3879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Botsford J. L., Drexler M. The cyclic 3',5'-adenosine monophosphate receptor protein and regulation of cyclic 3',5'-adenosine monophosphate synthesis in Escherichia coli. Mol Gen Genet. 1978 Sep 20;165(1):47–56. doi: 10.1007/BF00270375. [DOI] [PubMed] [Google Scholar]
  22. Botsford J. L. Metabolism of cyclic adenosine 3',5'-monophosphate and induction of tryptophanase in Escherichia coli. J Bacteriol. 1975 Oct;124(1):380–390. doi: 10.1128/jb.124.1.380-390.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Botsford J. L. cAMP and regulation of carbohydrate metabolism. Basic Life Sci. 1981;18:315–334. doi: 10.1007/978-1-4684-3980-9_19. [DOI] [PubMed] [Google Scholar]
  24. Braedt G., Gallant J. Role of the rel gene product in the control of cyclic adenosine 3',5'-monophosphate accumulation. J Bacteriol. 1977 Jan;129(1):564–566. doi: 10.1128/jb.129.1.564-566.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Brickman E., Soll L., Beckwith J. Genetic characterization of mutations which affect catabolite-sensitive operons in Escherichia coli, including deletions of the gene for adenyl cyclase. J Bacteriol. 1973 Nov;116(2):582–587. doi: 10.1128/jb.116.2.582-587.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Broman R. L., Dobrogosz W. J. Stimulation of cytochrome synthesis in Escherichia coli by cyclic AMP. Arch Biochem Biophys. 1974 Jun;162(2):595–601. doi: 10.1016/0003-9861(74)90220-3. [DOI] [PubMed] [Google Scholar]
  27. Buettner M. J., Spitz E., Rickenberg H. V. Cyclic adenosine 3',5'-monophosphate in Escherichia coli. J Bacteriol. 1973 Jun;114(3):1068–1073. doi: 10.1128/jb.114.3.1068-1073.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Calcott P. H., Calvert T. J. Characterization of 3': 5' -cyclic AMP phosphodiesterase in Klebsiella aerogenes and its role in substrate-accelerated death. J Gen Microbiol. 1981 Feb;122(2):313–321. doi: 10.1099/00221287-122-2-313. [DOI] [PubMed] [Google Scholar]
  29. Calcott P. H., Postgate J. R. On substrate-accelerated death in Klebsiella aerogenes. J Gen Microbiol. 1972 Apr;70(1):115–122. doi: 10.1099/00221287-70-1-115. [DOI] [PubMed] [Google Scholar]
  30. Cashel M. Regulation of bacterial ppGpp and pppGpp. Annu Rev Microbiol. 1975;29:301–318. doi: 10.1146/annurev.mi.29.100175.001505. [DOI] [PubMed] [Google Scholar]
  31. Castro L., Feucht B. U., Morse M. L., Saier M. H., Jr Regulation of carbohydrate permeases and adenylate cyclase in Escherichia coli. Studies with mutant strains in which enzyme I of the phosphoenolpyruvate:sugar phosphotransferase system is thermolabile. J Biol Chem. 1976 Sep 25;251(18):5522–5527. [PubMed] [Google Scholar]
  32. Chopra I., Howe T. G. Bacterial resistance to the tetracyclines. Microbiol Rev. 1978 Dec;42(4):707–724. doi: 10.1128/mr.42.4.707-724.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Cieśla Z., Bagdasarian M., Szczurkiewicz W., Przygońska M., Klopotowski T. Defective cell division in thermosensitive mutants of Salmonella typhimurium. Mol Gen Genet. 1972;116(2):107–125. doi: 10.1007/BF00582221. [DOI] [PubMed] [Google Scholar]
  34. Cook D. I., Revzin A. Intracellular location of catabolite activator protein of Escherichia coli. J Bacteriol. 1980 Mar;141(3):1279–1283. doi: 10.1128/jb.141.3.1279-1283.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Cook W. R., Kalb V. F., Jr, Peace A. A., Bernlohr R. W. Is cyclic guanosine 3',5'-monophosphate a cell cycle regulator? J Bacteriol. 1980 Mar;141(3):1450–1453. doi: 10.1128/jb.141.3.1450-1453.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Dallas W. S., Tseng Y., Dobrogosz W. J. Regulation of membrane functions and fatty acid composition in Escherichia coli by cyclic AMP receptor protein. Arch Biochem Biophys. 1976 Jul;175(1):295–302. doi: 10.1016/0003-9861(76)90511-7. [DOI] [PubMed] [Google Scholar]
  37. Daniel J., Danchin A. Involvement of cyclic AMP and its receptor protein in the sensitivity of Escherichia coli K 12 toward serine: excretion of 2-ketobutyrate, a precursor of isoleucine. Mol Gen Genet. 1979 Nov;176(3):343–350. doi: 10.1007/BF00333096. [DOI] [PubMed] [Google Scholar]
  38. Danley D. E., Drexler M., Botsford J. L. Differential binding of cyclic adenosine 3' ,5'-monophosphate to the cyclic adenosine 3' ,5'-monophosphate receptor protein in Escherichia coli. J Bacteriol. 1977 Apr;130(1):563–565. doi: 10.1128/jb.130.1.563-565.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. De Robertis E. M., Jr, Judewicz N. D., Torres H. N. Regulation of uracil uptake in Escherichia coli by adenosine 3',5'-monophosphate. Biochim Biophys Acta. 1976 Mar 19;426(3):451–463. doi: 10.1016/0005-2736(76)90390-4. [DOI] [PubMed] [Google Scholar]
  40. Dessein A., Schwartz M., Ullmann A. Catabolite repression in Escherichia coli mutants lacking cyclic AMP. Mol Gen Genet. 1978 Jun 1;162(1):83–87. doi: 10.1007/BF00333853. [DOI] [PubMed] [Google Scholar]
  41. Dessein A., Tillier F., Ullmann A. Catabolite modulator factor: physiological properties and in vivo effects. Mol Gen Genet. 1978 Jun 1;162(1):89–94. doi: 10.1007/BF00333854. [DOI] [PubMed] [Google Scholar]
  42. Dickson R. C., Abelson J., Barnes W. M., Reznikoff W. S. Genetic regulation: the Lac control region. Science. 1975 Jan 10;187(4171):27–35. doi: 10.1126/science.1088926. [DOI] [PubMed] [Google Scholar]
  43. Dietzler D. N., Leckie M. P., Sternheim W. L., Taxman T. L., Ungar J. M., Porter S. E. Evidence for the regulation of bacterial glycogen synthesis by cyclic AMP. Biochem Biophys Res Commun. 1977 Aug 22;77(4):1468–1477. doi: 10.1016/s0006-291x(77)80144-7. [DOI] [PubMed] [Google Scholar]
  44. Dills S. E., Dobrogosz W. J. Cyclic adenosine 3',5'-monophosphate regulation of membrane energetics in Escherichia coli. J Bacteriol. 1977 Sep;131(3):854–865. doi: 10.1128/jb.131.3.854-865.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Dills S. S., Apperson A., Schmidt M. R., Saier M. H., Jr Carbohydrate transport in bacteria. Microbiol Rev. 1980 Sep;44(3):385–418. doi: 10.1128/mr.44.3.385-418.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Dobrogosz W. J., Hamilton P. B. The role of cyclic AMP in chemotaxis in Escherichia coli. Biochem Biophys Res Commun. 1971 Jan 22;42(2):202–207. doi: 10.1016/0006-291x(71)90088-x. [DOI] [PubMed] [Google Scholar]
  47. Dottin R. P., Shiner L. S., Hoar D. I. Adenosine 3',5'-cyclic monophosphate regulation of chloramphenicol acetyltransferase synthesis in vitro from P1CM DNA. Virology. 1973 Feb;51(2):509–511. doi: 10.1016/0042-6822(73)90453-4. [DOI] [PubMed] [Google Scholar]
  48. Durkacz B. W., Kennedy C. K., Sherratt D. J. Plasmid replication and the induced synthesis of colicins E1 and E2 in Escherichia coli. J Bacteriol. 1974 Mar;117(3):940–946. doi: 10.1128/jb.117.3.940-946.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Eilen E., Pampeno C., Krakow J. S. Production and properties of the alpha core derived from the cyclic adenosine monophosphate receptor protein of Escherichia coli. Biochemistry. 1978 Jun 27;17(13):2469–2473. doi: 10.1021/bi00606a001. [DOI] [PubMed] [Google Scholar]
  50. Eisenstein B. I., Beachey E. H., Solomon S. S. Divergent effects of cyclic adenosine 3',5'-monophosphate on formation of type 1 fimbriae in different K-12 strains of Escherichia coli. J Bacteriol. 1981 Jan;145(1):620–623. doi: 10.1128/jb.145.1.620-623.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Epstein W., Rothman-Denes L. B., Hesse J. Adenosine 3':5'-cyclic monophosphate as mediator of catabolite repression in Escherichia coli. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2300–2304. doi: 10.1073/pnas.72.6.2300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Ezzell J. W., Dobrogosz W. J. Altered hexose transport and salt sensitivity in cyclic adenosine 3',5'-monophosphate-deficient Escherichia coli. J Bacteriol. 1975 Nov;124(2):815–824. doi: 10.1128/jb.124.2.815-824.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Feucht B. U., Saier M. H., Jr Fine control of adenylate cyclase by the phosphoenolpyruvate:sugar phosphotransferase systems in Escherichia coli and Salmonella typhimurium. J Bacteriol. 1980 Feb;141(2):603–610. doi: 10.1128/jb.141.2.603-610.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Fraser A. D., Yamazaki H. Effect of carbon sources on the rates of cyclic AMP synthesis, excretion, and degradation, and the ability to produce beta-galactosidase in Escherichia coli. Can J Biochem. 1979 Aug;57(8):1073–1079. doi: 10.1139/o79-136. [DOI] [PubMed] [Google Scholar]
  55. Freundlich M. Cyclic AMP can replace the relA-dependent requirement for derepression of acetohydroxy acid synthase in E. coli K-12. Cell. 1977 Dec;12(4):1121–1126. doi: 10.1016/0092-8674(77)90174-x. [DOI] [PubMed] [Google Scholar]
  56. Gallant J. A. Stringent control in E. coli. Annu Rev Genet. 1979;13:393–415. doi: 10.1146/annurev.ge.13.120179.002141. [DOI] [PubMed] [Google Scholar]
  57. Gallant J., Shell L., Bittner R. A novel nucleotide implicated in the response of E. coli to energy source downshift. Cell. 1976 Jan;7(1):75–84. doi: 10.1016/0092-8674(76)90257-9. [DOI] [PubMed] [Google Scholar]
  58. Gersch D., Skurk A., Römer W. Phosphate inhibition of secondary metabolism in Streptomyces hygroscopicus and its reversal by cyclic AMP. Arch Microbiol. 1979 Apr;121(1):91–96. doi: 10.1007/BF00409210. [DOI] [PubMed] [Google Scholar]
  59. Gilman A. G. A protein binding assay for adenosine 3':5'-cyclic monophosphate. Proc Natl Acad Sci U S A. 1970 Sep;67(1):305–312. doi: 10.1073/pnas.67.1.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Goldberg N. D., Haddox M. K. Cyclic GMP metabolism and involvement in biological regulation. Annu Rev Biochem. 1977;46:823–896. doi: 10.1146/annurev.bi.46.070177.004135. [DOI] [PubMed] [Google Scholar]
  61. Goldenbaum P. E., Hall G. A. Transport of cyclic adenosine 3',5'-monophosphate across Escherichia coli vesicle membranes. J Bacteriol. 1979 Nov;140(2):459–467. doi: 10.1128/jb.140.2.459-467.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Goldie A. H., Sanwal B. D. Genetic and physiological characterization of Escherichia coli mutants deficient in phosphoenolpyruvate carboxykinase activity. J Bacteriol. 1980 Mar;141(3):1115–1121. doi: 10.1128/jb.141.3.1115-1121.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Gonzalez J. E., Peterkofsky A. Diverse directional changes of cGMP relative to cAMP in E. coli. Biochem Biophys Res Commun. 1975 Nov 3;67(1):190–197. doi: 10.1016/0006-291x(75)90301-0. [DOI] [PubMed] [Google Scholar]
  64. Greenblatt J., Li J., Adhya S., Friedman D. I., Baron L. S., Redfield B., Kung H. F., Weissbach H. L factor that is required for beta-galactosidase synthesis is the nusA gene product involved in transcription termination. Proc Natl Acad Sci U S A. 1980 Apr;77(4):1991–1994. doi: 10.1073/pnas.77.4.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Greenfield L., Boone T., Wilcox G. DNA sequence of the araBAD promoter in Escherichia coli B/r. Proc Natl Acad Sci U S A. 1978 Oct;75(10):4724–4728. doi: 10.1073/pnas.75.10.4724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Guidi-Rontani C., Danchin A., Ullmann A. Catabolite repression in Escherichia coli mutants lacking cyclic AMP receptor protein. Proc Natl Acad Sci U S A. 1980 Oct;77(10):5799–5801. doi: 10.1073/pnas.77.10.5799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Haggerty D. M., Schleif R. F. Kinetics of the onset of catabolite repression in Escherichia coli as determined by lac messenger ribonucleic acid initiations and intracellular cyclic adenosine 3',5'-monophosphate levels. J Bacteriol. 1975 Sep;123(3):946–953. doi: 10.1128/jb.123.3.946-953.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Hamilton I. R., Lo G. C. Co-induction of beta-galactosidase and the lactose-P-enolpyruvate phosphotransferase system in Streptococcus salivarius and Streptococcus mutans. J Bacteriol. 1978 Dec;136(3):900–908. doi: 10.1128/jb.136.3.900-908.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Hamilton R. W., Achberger E. C., Kolenbrander P. E. Control of morphogenesis in Arthrobacter crystallopoiets: effect of cyclic adenosine 3',5'-monophosphate. J Bacteriol. 1977 Feb;129(2):874–879. doi: 10.1128/jb.129.2.874-879.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Hamilton R. W., Kolenbrander P. E. Regulation of cyclic AMP levels in Arthrobacter crystallopoietes and a morphogenetic mutant. J Bacteriol. 1978 Jun;134(3):1064–1073. doi: 10.1128/jb.134.3.1064-1073.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Hammer-Jespersen K., Nygaard P. Multiple regulation of nucleoside catabolizing enzymes in Escherichia coli: effects of 3:5' cyclic AMP and CRP protein. Mol Gen Genet. 1976 Oct 18;148(1):49–55. doi: 10.1007/BF00268545. [DOI] [PubMed] [Google Scholar]
  72. Hanus F. J., Maier R. J., Evans H. J. Autotrophic growth of H2-uptake-positive strains of Rhizobium japonicum in an atmosphere supplied with hydrogen gas. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1788–1792. doi: 10.1073/pnas.76.4.1788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Harman J. G., Botsford J. L. Synthesis of adenosine 3':5'-cyclic monophosphate in Salmonella typhimurium growing in continuous culture. J Gen Microbiol. 1979 Jan;110(1):243–246. doi: 10.1099/00221287-110-1-243. [DOI] [PubMed] [Google Scholar]
  74. Harwood C. R., Meynell E. Cyclic AMP and the production of sex pili by E. coli K-12 carrying derepressed sex factors. Nature. 1975 Apr 17;254(5501):628–660. doi: 10.1038/254628a0. [DOI] [PubMed] [Google Scholar]
  75. Harwood J. P., Gazdar C., Prasad C., Peterkofsky A., Curtis S. J., Epstein W. Involvement of the glucose enzymes II of the sugar phosphotransferase system in the regulation of adenylate cyclase by glucose in Escherichia coli. J Biol Chem. 1976 Apr 25;251(8):2462–2468. [PubMed] [Google Scholar]
  76. Harwood J., Smith D. H. Catabolite repression of chloramphenicol acetyl transferase synthesis in E. coli K12. Biochem Biophys Res Commun. 1971 Jan 8;42(1):57–62. doi: 10.1016/0006-291x(71)90361-5. [DOI] [PubMed] [Google Scholar]
  77. Hasan N., Durr I. F. Induction of beta-galactosidase in Lactobacillus plantarum. J Bacteriol. 1974 Oct;120(1):66–73. doi: 10.1128/jb.120.1.66-73.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Hassan H. M., Fridovich I. Regulation of the synthesis of catalase and peroxidase in Escherichia coli. J Biol Chem. 1978 Sep 25;253(18):6445–6420. [PubMed] [Google Scholar]
  79. Herbert D., Kornberg H. L. Glucose transport as rate-limiting step in the growth of Escherichia coli on glucose. Biochem J. 1976 May 15;156(2):477–480. doi: 10.1042/bj1560477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Hesse J. E., Rothman-Denes L. B., Epstein W. A convenient erythrocyte membrane cyclic AMP binding assay. Anal Biochem. 1975 Sep;68(1):202–208. doi: 10.1016/0003-2697(75)90695-8. [DOI] [PubMed] [Google Scholar]
  81. Hewlett E., Wolff J. Soluble adenylate cyclase from the culture medium of Bordetella pertussis: purification and characterization. J Bacteriol. 1976 Aug;127(2):890–898. doi: 10.1128/jb.127.2.890-898.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Hirata M., Hayaishi O. Adenyl cyclase of Brevibacterium liquefaciens. Biochim Biophys Acta. 1967 Nov 21;149(1):1–11. doi: 10.1016/0005-2787(67)90685-5. [DOI] [PubMed] [Google Scholar]
  83. Ho J., McCurdy H. D. Demonstration of positive chemotaxis to cyclic GMP and 5'-AMP in Myxococcus xanthus by means of a simple apparatus for generating practically stable concentration gradients. Can J Microbiol. 1979 Oct;25(10):1214–1218. doi: 10.1139/m79-191. [DOI] [PubMed] [Google Scholar]
  84. Holmes W. M., Kane J. F. Anthranilate synthase from Bacillus subtilis. The role of a reduced subunit X in aggregate formation and amidotransferase activity. J Biol Chem. 1975 Jun 25;250(12):4462–4469. [PubMed] [Google Scholar]
  85. Hood E. E., Armour S., Ownby J. D., Handa A. K., Bressan R. A. Effect of nitrogen starvation on the level of adenosine 3',5'-monophosphate in Anabaena variabilis. Biochim Biophys Acta. 1979 Dec 3;588(2):193–200. doi: 10.1016/0304-4165(79)90202-2. [DOI] [PubMed] [Google Scholar]
  86. Hylemon P. B., Phibbs P. V., Jr Evidence against the presence of cyclic AMP and related enzymes in selected strains of Bacteroides fragilis. Biochem Biophys Res Commun. 1974 Sep 9;60(1):88–95. doi: 10.1016/0006-291x(74)90176-4. [DOI] [PubMed] [Google Scholar]
  87. Ishiyama J. Isolation of cyclic 3',5'-pyrimidine mononucleotides from bacterial culture fluids. Biochem Biophys Res Commun. 1975 Jul 8;65(1):286–292. doi: 10.1016/s0006-291x(75)80091-x. [DOI] [PubMed] [Google Scholar]
  88. Ishiyama J. Isolation of cyclic deoxyadenosine 3':5'-monophosphate from the culture fluid of Corynebacterium murisepticum No. 7. J Biol Chem. 1976 Jan 25;251(2):438–440. [PubMed] [Google Scholar]
  89. Ishiyama J. Isolation of inosine 3':5'-monophosphate from bacterial culture medium. J Cyclic Nucleotide Res. 1976;2(1):21–24. [PubMed] [Google Scholar]
  90. Iuchi S., Kubota Y., Tanaka S. Mutants defective in binding activity for cyclic adenosine 3',5'-monophosphate in Vibrio parahaemolyticus. J Bacteriol. 1975 Oct;124(1):567–569. doi: 10.1128/jb.124.1.567-569.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Janecek J., Náprstek J., Dobrová Z., Jiresová M., Spízek J. Characterization of adenylate cyclase from Escherichia coli. Folia Microbiol (Praha) 1980;25(5):361–368. doi: 10.1007/BF02876688. [DOI] [PubMed] [Google Scholar]
  92. Kahan F. M., Kahan J. S., Cassidy P. J., Kropp H. The mechanism of action of fosfomycin (phosphonomycin). Ann N Y Acad Sci. 1974 May 10;235(0):364–386. doi: 10.1111/j.1749-6632.1974.tb43277.x. [DOI] [PubMed] [Google Scholar]
  93. Kaiser D., Manoil C., Dworkin M. Myxobacteria: cell interactions, genetics, and development. Annu Rev Microbiol. 1979;33:595–639. doi: 10.1146/annurev.mi.33.100179.003115. [DOI] [PubMed] [Google Scholar]
  94. Katz L., Kingsbury D. T., Helinski D. R. Stimulation by cyclic adenosine monophosphate of plasmid deoxyribonucleic acid replication and catabolite repression of the plasmid deoxyribonucleic acid-protein relaxation complex. J Bacteriol. 1973 May;114(2):577–591. doi: 10.1128/jb.114.2.577-591.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Kaziro Y. Accumulation of cyclic guanosine 3':5'-monophosphate in the culture medium of growing cells of Escherichia coli. Biochem Biophys Res Commun. 1976 Jan 26;68(2):430–435. doi: 10.1016/0006-291x(76)91163-3. [DOI] [PubMed] [Google Scholar]
  96. Kennell D., Riezman H. Transcription and translation initiation frequencies of the Escherichia coli lac operon. J Mol Biol. 1977 Jul;114(1):1–21. doi: 10.1016/0022-2836(77)90279-0. [DOI] [PubMed] [Google Scholar]
  97. Kerjan P., Szulmajster J. Isolation and properties of a cyclic guanosine-monophosphate sensitive intracellular ribonuclease from Bacillus subtilis. Biochimie. 1976;58(5):533–541. doi: 10.1016/s0300-9084(76)80223-4. [DOI] [PubMed] [Google Scholar]
  98. Khandelwal R. L., Hamilton I. R. Purification and properties of adenyl cyclase from Streptococcus salivarius. J Biol Chem. 1971 May 25;246(10):3297–3304. [PubMed] [Google Scholar]
  99. Kier L. D., Weppelman R., Ames B. N. Regulation of two phosphatases and a cyclic phosphodiesterase of Salmonella typhimurium. J Bacteriol. 1977 Apr;130(1):420–428. doi: 10.1128/jb.130.1.420-428.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Klee C. B., Crouch T. H., Richman P. G. Calmodulin. Annu Rev Biochem. 1980;49:489–515. doi: 10.1146/annurev.bi.49.070180.002421. [DOI] [PubMed] [Google Scholar]
  101. Kline E. L., Bankaitis V. A., Brown C. S., Montefiori D. C. Metabolite gene regulation: imidazole and imidazole derivatives which circumvent cyclic adenosine 3',5'-monophosphate in induction of the Escherichia coli L-arabinose operon. J Bacteriol. 1980 Feb;141(2):770–778. doi: 10.1128/jb.141.2.770-778.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Kline E. L., Brown C. S., Bankaitis V., Montefiori D. C., Craig K. Metabolite gene regulation of the L-arabinose operon in Escherichia coli with indoleacetic acid and other indole derivatives. Proc Natl Acad Sci U S A. 1980 Apr;77(4):1768–1772. doi: 10.1073/pnas.77.4.1768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Komeda Y., Suzuki H., Ishidsu J. I., Iino T. The role of cAMP in flagellation of Salmonella typhimurium. Mol Gen Genet. 1976 Dec 31;142(4):289–298. doi: 10.1007/BF00271253. [DOI] [PubMed] [Google Scholar]
  104. Kumar S. A., Murthy N. S., Krakow J. S. Ligand-induced change in the radius of gyration of cAMP receptor protein from Escherichia coli. FEBS Lett. 1980 Jan 1;109(1):121–124. doi: 10.1016/0014-5793(80)81324-x. [DOI] [PubMed] [Google Scholar]
  105. Kumar S., Prakash N., Sharma V. K. Control of minicell producing cell division by cAMP-receptor protein complex in Escherichia coli. Mol Gen Genet. 1979 Nov;176(3):449–450. doi: 10.1007/BF00333110. [DOI] [PubMed] [Google Scholar]
  106. Kumar S. Properties of adenyl cyclase and cyclic adenosine 3',5'-monophosphate receptor protein-deficient mutants of Escherichia coli. J Bacteriol. 1976 Feb;125(2):545–555. doi: 10.1128/jb.125.2.545-555.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Kurn N., Contreras I., Shapiro L. Galactose catabolism in Caulobacter crescentus. J Bacteriol. 1978 Aug;135(2):517–520. doi: 10.1128/jb.135.2.517-520.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Kurn N., Shapiro L., Agabian N. Effect of carbon source and the role of cyclic adenosine 3',5'-monophosphate on the Caulobacter cell cycle. J Bacteriol. 1977 Sep;131(3):951–959. doi: 10.1128/jb.131.3.951-959.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Kurn N., Shapiro L. Effect of 3':5'-cyclic GMP derivatives on the formation of Caulobacter surface structures. Proc Natl Acad Sci U S A. 1976 Sep;73(9):3303–3307. doi: 10.1073/pnas.73.9.3303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Lee N. L., Gielow W. O., Wallace R. G. Mechanism of araC autoregulation and the domains of two overlapping promoters, Pc and PBAD, in the L-arabinose regulatory region of Escherichia coli. Proc Natl Acad Sci U S A. 1981 Feb;78(2):752–756. doi: 10.1073/pnas.78.2.752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Lefebvre G., Martin N., Schneider F., Raval G., Gay R. Fluctuations du taux d'AMP cyclique et des activités adenylate cyclase et AMP cyclique-phosphodiesterase dans les cultures synchrones d'un procaryote, Nocardia restricta. Biochim Biophys Acta. 1978 May 3;540(2):221–230. doi: 10.1016/0304-4165(78)90134-4. [DOI] [PubMed] [Google Scholar]
  112. Lengeler J., Steinberger H. Analysis of the regulatory mechanisms controlling the synthesis of the hexitol transport systems in Escherichia coli K12. Mol Gen Genet. 1978 Aug 17;164(2):163–169. doi: 10.1007/BF00267381. [DOI] [PubMed] [Google Scholar]
  113. Lepo J. E., Wyss O. Derepression of nitrogenase in Azotobacter. Biochem Biophys Res Commun. 1974 Sep 9;60(1):76–80. doi: 10.1016/0006-291x(74)90174-0. [DOI] [PubMed] [Google Scholar]
  114. Leung K. L., Yamazaki H. Extracellular accumulation of L-glutamate in adenylyl cyclase deficient or cyclic AMP receptor protein deficient mutants of Escherichia coli. Can J Microbiol. 1980 Jun;26(6):718–721. doi: 10.1139/m80-123. [DOI] [PubMed] [Google Scholar]
  115. Lim S. T., Shanmugam K. T. Regulation of hydrogen utilisation in Rhizobium japonicum by cyclic AMP. Biochim Biophys Acta. 1979 May 16;584(3):479–492. doi: 10.1016/0304-4165(79)90121-1. [DOI] [PubMed] [Google Scholar]
  116. Lin E. C. Glycerol dissimilation and its regulation in bacteria. Annu Rev Microbiol. 1976;30:535–578. doi: 10.1146/annurev.mi.30.100176.002535. [DOI] [PubMed] [Google Scholar]
  117. Lin P. P. Cyclic nucleotides in higher plants? Adv Cyclic Nucleotide Res. 1974;4(0):439–460. [PubMed] [Google Scholar]
  118. Lis J. T., Schleif R. Different cyclic AMP requirements for induction of the arabinose and lactose operons of Escherichia coli. J Mol Biol. 1973 Sep 5;79(1):149–162. doi: 10.1016/0022-2836(73)90276-3. [DOI] [PubMed] [Google Scholar]
  119. Lo T. C., Rayman M. K., Sanwal B. D. Transport of succinate in Escherichia coli. I. Biochemical and genetic studies of transport in whole cells. J Biol Chem. 1972 Oct 10;247(19):6323–6331. [PubMed] [Google Scholar]
  120. Ludwig R. A. Control of ammonium assimilation in Rhizobium 32H1. J Bacteriol. 1978 Jul;135(1):114–123. doi: 10.1128/jb.135.1.114-123.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. Lugtenberg B., Peters R., Bernheimer H., Berendsen W. Influence of cultural conditions and mutations on the composition of the outer membrane proteins of Escherichia coli. Mol Gen Genet. 1976 Sep 23;147(3):251–262. doi: 10.1007/BF00582876. [DOI] [PubMed] [Google Scholar]
  122. MAGASANIK B. Catabolite repression. Cold Spring Harb Symp Quant Biol. 1961;26:249–256. doi: 10.1101/sqb.1961.026.01.031. [DOI] [PubMed] [Google Scholar]
  123. Macchia V., Varrone S., Weissbach H., Miller D. L. Guanylate cyclase in Escherichia coli. Purification and properties. J Biol Chem. 1975 Aug 25;250(16):6214–6217. [PubMed] [Google Scholar]
  124. Majerfeld I. H., Miller D., Spitz E., Rickenberg H. V. Regulation of the synthesis of adenylate cyclase in Escherichia coli by the cAMP -- cAMP receptor protein complex. Mol Gen Genet. 1981;181(4):470–475. doi: 10.1007/BF00428738. [DOI] [PubMed] [Google Scholar]
  125. Majors J. Specific binding of CAP factor to lac promoter DNA. Nature. 1975 Aug 21;256(5519):672–674. doi: 10.1038/256672a0. [DOI] [PubMed] [Google Scholar]
  126. Mallick U., Herrlich P. Regulation of synthesis of a major outer membrane protein: cyclic AMP represses Escherichia coli protein III synthesis. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5520–5523. doi: 10.1073/pnas.76.11.5520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  127. Martin J. F., Demain A. L. Effect of exogenous nucleotides on the candicidin fermentation. Can J Microbiol. 1977 Oct;23(10):1334–1339. doi: 10.1139/m77-202. [DOI] [PubMed] [Google Scholar]
  128. Martínez-Cadena M. G., Guzman-Verduzco L. M., Stieglitz H., Kupersztoch-Portnoy Y. M. Catabolite repression of Escherichia coli heat-stable enterotoxin activity. J Bacteriol. 1981 Feb;145(2):722–728. doi: 10.1128/jb.145.2.722-728.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  129. McCurdy H. D., Ho J., Dobson W. J. Cyclic nucleotides, cyclic nucleotide phosphodiesterase, and development in Myxococcus xanthus. Can J Microbiol. 1978 Dec;24(12):1475–1481. doi: 10.1139/m78-237. [DOI] [PubMed] [Google Scholar]
  130. McGinnis J. F., Paigen K. Site of catabolite inhibition of carbohydrate metabolism. J Bacteriol. 1973 May;114(2):885–887. doi: 10.1128/jb.114.2.885-887.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. McKay D. B., Steitz T. A. Structure of catabolite gene activator protein at 2.9 A resolution suggests binding to left-handed B-DNA. Nature. 1981 Apr 30;290(5809):744–749. doi: 10.1038/290744a0. [DOI] [PubMed] [Google Scholar]
  132. Morriss D. M., Lawson J. W. Cyclic adenosine 3', 5'-monophosphate in Neisseria gonorrhoeae. Can J Microbiol. 1979 Feb;25(2):235–237. doi: 10.1139/m79-037. [DOI] [PubMed] [Google Scholar]
  133. Morse S. A., Bartenstein L., Wegener W. S. Absence of 3',5'-cyclic adenosine monophosphate and related enzymes in Neisseria gonorrhoeae. Proc Soc Exp Biol Med. 1977 May;155(1):35–39. doi: 10.3181/00379727-155-39739. [DOI] [PubMed] [Google Scholar]
  134. Movva N. R., Nakamura K., Inouye M. Regulatory region of the gene for the ompA protein, a major outer membrane protein of Escherichia coli. Proc Natl Acad Sci U S A. 1980 Jul;77(7):3845–3849. doi: 10.1073/pnas.77.7.3845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  135. Murad F., Arnold W. P., Mittal C. K., Braughler J. M. Properties and regulation of guanylate cyclase and some proposed functions for cyclic GMP. Adv Cyclic Nucleotide Res. 1979;11:175–204. [PubMed] [Google Scholar]
  136. NEIDHARDT F. C., MAGASANIK B. Reversal of the glucose inhibition of histidase biosynthesis in Aerobacter aerogenes. J Bacteriol. 1957 Feb;73(2):253–259. doi: 10.1128/jb.73.2.253-259.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  137. Nakazawa A., Tamada T. Stimulation of colicin E 1 synthesis by cyclic 3', 5'-adenosine monophosphate in mitomycin C-induced Escherichia coli. Biochem Biophys Res Commun. 1972 Jan 31;46(2):1004–1010. doi: 10.1016/s0006-291x(72)80241-9. [DOI] [PubMed] [Google Scholar]
  138. Nealson K. H., Hastings J. W. Bacterial bioluminescence: its control and ecological significance. Microbiol Rev. 1979 Dec;43(4):496–518. doi: 10.1128/mr.43.4.496-518.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  139. Nielsen L. D., Monard D., Rickenberg H. V. Cyclic 3',5'-adenosine monophosphate phosphodiesterase of Escherichia coli. J Bacteriol. 1973 Nov;116(2):857–866. doi: 10.1128/jb.116.2.857-866.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  140. Ogden S., Haggerty D., Stoner C. M., Kolodrubetz D., Schleif R. The Escherichia coli L-arabinose operon: binding sites of the regulatory proteins and a mechanism of positive and negative regulation. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3346–3350. doi: 10.1073/pnas.77.6.3346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  141. Oka M., Murooka Y., Harada T. Genetic control of tyramine oxidase, which is involved in derepressed synthesis of arylsulfatase in Klebsiella aerogenes. J Bacteriol. 1980 Jul;143(1):321–327. doi: 10.1128/jb.143.1.321-327.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. Okamura H., Murooka Y., Harada T. Regulation of tyramine oxidase synthesis in Klebsiella aerogenes. J Bacteriol. 1976 Jul;127(1):24–31. doi: 10.1128/jb.127.1.24-31.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  143. Orlowski M. Cyclic adenosine 3',5'-monophosphate binding protein in developing myxospores of Myxococcus xanthus. Can J Microbiol. 1980 Aug;26(8):905–911. doi: 10.1139/m80-157. [DOI] [PubMed] [Google Scholar]
  144. Padh H., Venkitasubramanian T. A. Lack of adenosine-3',5'-monophosphate receptor protein and apparent lack of expression of adenosine-3',5'-monophosphate functions in Mycobacterium smegmatis CDC 46. Microbios. 1980;27(108):69–78. [PubMed] [Google Scholar]
  145. Parada J. L., Magasanik B. Expression of the hut operons of Salmonella typhimurium in Klebsiella aerogenes and in Escherichia coli. J Bacteriol. 1975 Dec;124(3):1263–1268. doi: 10.1128/jb.124.3.1263-1268.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  146. Parish J. H., Wedgwood K. R., Herries D. G. Morphogenesis in Myxococcus xanthus and Myxococcus virescens Myxobacterales. Arch Microbiol. 1976 Apr 1;107(3):343–351. doi: 10.1007/BF00425350. [DOI] [PubMed] [Google Scholar]
  147. Pastan I., Adhya S. Cyclic adenosine 5'-monophosphate in Escherichia coli. Bacteriol Rev. 1976 Sep;40(3):527–551. doi: 10.1128/br.40.3.527-551.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  148. Pastan I., Perlman R. Cyclic adenosine monophosphate in bacteria. Science. 1970 Jul 24;169(3943):339–344. doi: 10.1126/science.169.3943.339. [DOI] [PubMed] [Google Scholar]
  149. Patrick J. M., Dobrogosz W. J. The effect of cyclic AMP on anaerobic growth of Escherichia coli. Biochem Biophys Res Commun. 1973 Sep 18;54(2):555–561. doi: 10.1016/0006-291x(73)91458-7. [DOI] [PubMed] [Google Scholar]
  150. Pauli G., Ehring R., Overath P. Fatty acid degradation in Escherichia coli: requirement of cyclic adenosine monophosphate and cyclic adenosine monophosphate receptor protein for enzyme synthesis. J Bacteriol. 1974 Mar;117(3):1178–1183. doi: 10.1128/jb.117.3.1178-1183.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  151. Perlman R. L., Pastan I. Pleiotropic deficiency of carbohydrate utilization in an adenyl cyclase deficient mutant of Escherichia coli. Biochem Biophys Res Commun. 1969 Sep 24;37(1):151–157. doi: 10.1016/0006-291x(69)90893-6. [DOI] [PubMed] [Google Scholar]
  152. Peterkofsky A. Cyclic nucleotides in bacteria. Adv Cyclic Nucleotide Res. 1976;7:1–48. [PubMed] [Google Scholar]
  153. Peterkofsky A., Gazdar C. Escherichia coli adenylate cyclase complex: regulation by the proton electrochemical gradient. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1099–1103. doi: 10.1073/pnas.76.3.1099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  154. Peterkofsky A., Gazdar C. Glucose and the metabolism of adenosine 3':5'-cyclic monophosphate in Escherichia coli. Proc Natl Acad Sci U S A. 1971 Nov;68(11):2794–2798. doi: 10.1073/pnas.68.11.2794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  155. Peterkofsky A., Gazdar C. Glucose inhibition of adenylate cyclase in intact cells of Escherichia coli B. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2324–2328. doi: 10.1073/pnas.71.6.2324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  156. Peterkofsky A., Gazdar C. Measurements of rates of adenosine 3':5'-cyclic monophosphate synthesis in intact Escherichia coli B. Proc Natl Acad Sci U S A. 1973 Jul;70(7):2149–2152. doi: 10.1073/pnas.70.7.2149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  157. Peterkofsky A., Gonzalez J. E., Gazdar C. The Escherichia coli adenylate cyclase complex. Regulation by enzyme I of the phosphoenolpyruvate:sugar phosphotransferase system. Arch Biochem Biophys. 1978 May;188(1):47–55. doi: 10.1016/0003-9861(78)90354-5. [DOI] [PubMed] [Google Scholar]
  158. Phillips A. T., Egan R. M., Lewis B. Control of biodegradative threonine dehydratase inducibility by cyclic AMP in energy-restricted Escherichia coli. J Bacteriol. 1978 Sep;135(3):828–840. doi: 10.1128/jb.135.3.828-840.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  159. Phillips A. T., Mulfinger L. M. Cyclic adenosine 3',5'-monophosphate levels in Pseudomonas putida and Pseudomonas aeruginosa during induction and carbon catabolite repression of histidase synthesis. J Bacteriol. 1981 Mar;145(3):1286–1292. doi: 10.1128/jb.145.3.1286-1292.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  160. Piovant M., Lazdunski C. Different cyclic adenosine 3',5'-monophosphate requirements for induction of beta-galactosidase and tryptophanase. Effect of osmotic pressure on intracellular cyclic adenosine 3,5-monophosphate concentrations. Biochemistry. 1975 May 6;14(9):1821–1825. doi: 10.1021/bi00680a003. [DOI] [PubMed] [Google Scholar]
  161. Polglase W. J., Iwacha D., Thomson M. Elevated cyclic AMP concentration in streptomycin-dependent Escherichia coli. J Bacteriol. 1978 Jan;133(1):422–423. doi: 10.1128/jb.133.1.422-423.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  162. Postma P. W., Roseman S. The bacterial phosphoenolpyruvate: sugar phosphotransferase system. Biochim Biophys Acta. 1976 Dec 14;457(3-4):213–257. doi: 10.1016/0304-4157(76)90001-0. [DOI] [PubMed] [Google Scholar]
  163. Potter K., Chaloner-Larsson G., Yamazaki H. Abnormally high rate of cyclic AMP excretion from an Escherichia coli mutant deficient in cyclic AMP receptor protein. Biochem Biophys Res Commun. 1974 Mar 25;57(2):379–385. doi: 10.1016/0006-291x(74)90941-3. [DOI] [PubMed] [Google Scholar]
  164. Poulson R., Whitlow K. J., Polglase W. J. Catabolite repression of protoporhyrin IX biosynthesis in Escherichia coli K-12. FEBS Lett. 1976 Mar 1;62(3):351–353. doi: 10.1016/0014-5793(76)80092-0. [DOI] [PubMed] [Google Scholar]
  165. Priest F. G. Typist: effect of glucose and cyclic nucleotides on the transcription of alpha-amylase mRHA in Bacillus subtilis. Biochem Biophys Res Commun. 1975 Apr 7;63(3):606–610. doi: 10.1016/s0006-291x(75)80427-x. [DOI] [PubMed] [Google Scholar]
  166. Primakoff P., Artz S. W. Positive control of lac operon expression in vitro by guanosine 5'-diphosphate 3'-diphosphate. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1726–1730. doi: 10.1073/pnas.76.4.1726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  167. Primakoff P. In vivo role of the relA+ gene in regulation of the lac operon. J Bacteriol. 1981 Jan;145(1):410–416. doi: 10.1128/jb.145.1.410-416.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  168. Prival M. J., Magasanik B. Resistance to catabolite repression of histidase and proline oxidase during nitrogen-limited growth of Klebsiella aerogenes. J Biol Chem. 1971 Oct 25;246(20):6288–6296. [PubMed] [Google Scholar]
  169. Prusiner S., Miller R. E., Valentine R. C. Adenosine 3':5'-cyclic monophosphate control of the enzymes of glutamine metabolism in Escherichia coli. Proc Natl Acad Sci U S A. 1972 Oct;69(10):2922–2926. doi: 10.1073/pnas.69.10.2922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  170. Ragan C. M., Vining L. C. Intracellular cyclic adenosine 3',5'-monophosphate levels and streptomycin production in cultures of Streptomyces griseus. Can J Microbiol. 1978 Aug;24(8):1012–1015. doi: 10.1139/m78-168. [DOI] [PubMed] [Google Scholar]
  171. Rephaeli A. W., Saier M. H., Jr Effects of crp mutations on adenosine 3',5'-monophosphate metabolism in Salmonella typhimurium. J Bacteriol. 1976 Jul;127(1):120–127. doi: 10.1128/jb.127.1.120-127.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  172. Rephaeli A. W., Saier M. H., Jr Regulation of genes coding for enzyme constituents of the bacterial phosphotransferase system. J Bacteriol. 1980 Feb;141(2):658–663. doi: 10.1128/jb.141.2.658-663.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  173. Rosenberg M., Court D. Regulatory sequences involved in the promotion and termination of RNA transcription. Annu Rev Genet. 1979;13:319–353. doi: 10.1146/annurev.ge.13.120179.001535. [DOI] [PubMed] [Google Scholar]
  174. Ross E. M., Gilman A. G. Biochemical properties of hormone-sensitive adenylate cyclase. Annu Rev Biochem. 1980;49:533–564. doi: 10.1146/annurev.bi.49.070180.002533. [DOI] [PubMed] [Google Scholar]
  175. Rothman-Denes L. B., Hesse J. E., Epstein W. Role of cyclic adenosine 3',5'-monophosphate in the in vivo expression of the galactose operon of Escherichia coli. J Bacteriol. 1973 Jun;114(3):1040–1044. doi: 10.1128/jb.114.3.1040-1044.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  176. Russell L., Yamazaki H. The dependence of Escherichia coli asparaginase II formation on cyclic AMP and cyclic AMP receptor protein. Can J Microbiol. 1978 May;24(5):629–631. doi: 10.1139/m78-104. [DOI] [PubMed] [Google Scholar]
  177. Sahyoun N., Durr I. F. Evidence against the presence of 3',5'-cyclic adenosine monophosphate and relevant enzymes in Lactobacillus plantarum. J Bacteriol. 1972 Oct;112(1):421–426. doi: 10.1128/jb.112.1.421-426.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  178. Saier M. H., Jr Bacterial phosphoenolpyruvate: sugar phosphotransferase systems: structural, functional, and evolutionary interrelationships. Bacteriol Rev. 1977 Dec;41(4):856–871. doi: 10.1128/br.41.4.856-871.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  179. Saier M. H., Jr, Feucht B. U. Coordinate regulation of adenylate cyclase and carbohydrate permeases by the phosphoenolpyruvate:sugar phosphotransferase system in Salmonella typhimurium. J Biol Chem. 1975 Sep 10;250(17):7078–7080. [PubMed] [Google Scholar]
  180. Saier M. H., Jr, Feucht B. U., McCaman M. T. Regulation of intracellular adenosine cyclic 3':5'-monophosphate levels in Escherichia coli and Salmonella typhimurium. Evidence for energy-dependent excretion of the cyclic nucleotide. J Biol Chem. 1975 Oct 10;250(19):7593–7601. [PubMed] [Google Scholar]
  181. Saier M. H., Jr, Feucht B. U. Regulation of carbohydrate transport activities in Salmonella typhimurium: use of the phosphoglycerate transport system to energize solute uptake. J Bacteriol. 1980 Feb;141(2):611–617. doi: 10.1128/jb.141.2.611-617.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  182. Saier M. H., Jr, Roseman S. Sugar transport. The crr mutation: its effect on repression of enzyme synthesis. J Biol Chem. 1976 Nov 10;251(21):6598–6605. [PubMed] [Google Scholar]
  183. Saier M. H., Jr, Schmidt M. R., Leibowitz M. Cyclic AMP-dependent synthesis of fimbriae in Salmonella typhimurium: effects of cya and pts mutations. J Bacteriol. 1978 Apr;134(1):356–358. doi: 10.1128/jb.134.1.356-358.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  184. Saier M. H., Jr, Straud H., Massman L. S., Judice J. J., Newman M. J., Feucht B. U. Permease-specific mutations in Salmonella typhimurium and Escherichia coli that release the glycerol, maltose, melibiose, and lactose transport systems from regulation by the phosphoenolpyruvate:sugar phosphotransferase system. J Bacteriol. 1978 Mar;133(3):1358–1367. doi: 10.1128/jb.133.3.1358-1367.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  185. Sarkar N., Paulus H. A guanosine 3':5'-monophosphate-sensitive nuclease from Bacillus brevis. J Biol Chem. 1975 Jan 25;250(2):684–690. [PubMed] [Google Scholar]
  186. Saxe S. A., Revzin A. Cooperative binding to DNA of catabolite activator protein of Escherichia coli. Biochemistry. 1979 Jan 23;18(2):255–263. doi: 10.1021/bi00569a003. [DOI] [PubMed] [Google Scholar]
  187. Schechter S. L., Gold Z., Krulwich T. A. Enzyme induction and repression in Arthrobacter crystallopoietes. Arch Mikrobiol. 1972;85(4):280–293. doi: 10.1007/BF00549266. [DOI] [PubMed] [Google Scholar]
  188. Schmitz A. Cyclic AMP receptor proteins interacts with lactose operator DNA. Nucleic Acids Res. 1981 Jan 24;9(2):277–292. doi: 10.1093/nar/9.2.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  189. Scholte B. J., Postma P. W. Mutation in the crp gene of Salmonella typhimurium which interferes with inducer exclusion. J Bacteriol. 1980 Feb;141(2):751–757. doi: 10.1128/jb.141.2.751-757.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  190. Setlow B., Setlow P. Levels of cyclic GMP in dormant, germinated, and outgrowing spores and growing and sporulating cells of Bacillus megaterium. J Bacteriol. 1978 Oct;136(1):433–436. doi: 10.1128/jb.136.1.433-436.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  191. Setlow P. Inability of detect cyclic AMP in vegetative or sporulating cells or dormant spores of Bacillus megaterium. Biochem Biophys Res Commun. 1973 May 15;52(2):365–372. doi: 10.1016/0006-291x(73)90720-1. [DOI] [PubMed] [Google Scholar]
  192. Shapiro L., Agabian-Keshishian N., Hirsch A., Rosen O. M. Effect of dibutyryladenosine 3':5'-cyclic monophosphate on growth and differentiation in Caulobacter crescentus. Proc Natl Acad Sci U S A. 1972 May;69(5):1225–1229. doi: 10.1073/pnas.69.5.1225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  193. Shapiro L. Differentiation in the Caulobacter cell cycle. Annu Rev Microbiol. 1976;30:377–407. doi: 10.1146/annurev.mi.30.100176.002113. [DOI] [PubMed] [Google Scholar]
  194. Shibuya M., Arai K., Kaziro Y. A novel method for the determination of guanosine 3':5'-cyclic monophosphate (cyclic GMP). Biochem Biophys Res Commun. 1975 Jan 6;62(1):129–135. doi: 10.1016/s0006-291x(75)80414-1. [DOI] [PubMed] [Google Scholar]
  195. Shibuya M., Takebe Y., Kaziro Y. A possible involvement of cya gene in the synthesis of cyclic guanosine 3':5'-monophosphate in E. coli. Cell. 1977 Oct;12(2):521–528. doi: 10.1016/0092-8674(77)90128-3. [DOI] [PubMed] [Google Scholar]
  196. Shuvalov V. A., Dolan E., Ke B. Spectral and kinetic evidence for two early electron acceptors in photosystem I. Proc Natl Acad Sci U S A. 1979 Feb;76(2):770–773. doi: 10.1073/pnas.76.2.770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  197. Siegel L. S., Hylemon P. B., Phibbs P. V., Jr Cyclic adenosine 3',5'-monophosphate levels and activities of adenylate cyclase and cyclic adenosine 3',5'-monophosphate phosphodiesterase in Pseudomonas and Bacteroides. J Bacteriol. 1977 Jan;129(1):87–96. doi: 10.1128/jb.129.1.87-96.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  198. Silverstone A. E., Goman M., Scaife J. G. ALT: a new factor involved in the synthesis of RNA by Escherichia coli. Mol Gen Genet. 1972;118(3):223–234. doi: 10.1007/BF00333459. [DOI] [PubMed] [Google Scholar]
  199. Smith B. R., Schleif R. Nucleotide sequence of the L-arabinose regulatory region of Escherichia coli K12. J Biol Chem. 1978 Oct 10;253(19):6931–6933. [PubMed] [Google Scholar]
  200. Stephens J. C., Artz S. W., Ames B. N. Guanosine 5'-diphosphate 3'-diphosphate (ppGpp): positive effector for histidine operon transcription and general signal for amino-acid deficiency. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4389–4393. doi: 10.1073/pnas.72.11.4389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  201. Swenson P. A. Antipain lethality to Escherichia coli: dependence upon cyclic adenosine 3',5'-monophosphate and its receptor protein. J Bacteriol. 1979 Aug;139(2):690–693. doi: 10.1128/jb.139.2.690-693.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  202. Swenson P. A., Joshi J. G., Schenley R. L. Regulation of cessation of respiration and killing by cyclic 3',5'-adenosine monophosphate and its receptor protein after far-ultraviolet irradiation of Escherichia coli. Mol Gen Genet. 1978 Feb 16;159(2):125–130. doi: 10.1007/BF00270885. [DOI] [PubMed] [Google Scholar]
  203. Tait R. C., Andersen K., Cangelosi G., Shanmugam K. T. Hydrogenase genes. Basic Life Sci. 1981;18:279–303. doi: 10.1007/978-1-4684-3980-9_17. [DOI] [PubMed] [Google Scholar]
  204. Takebe Y., Shibuya M., Kaziro Y. A new extragenic suppressor of cya mutation. Mutant cyclic AMP receptor protein with an increased affinity for cyclic AMP. J Biochem. 1978 Jun;83(6):1615–1623. doi: 10.1093/oxfordjournals.jbchem.a132073. [DOI] [PubMed] [Google Scholar]
  205. Tao M., Huberman A. Some properties of Escherichia coli adenyl cyclase. Arch Biochem Biophys. 1970 Nov;141(1):236–240. doi: 10.1016/0003-9861(70)90127-x. [DOI] [PubMed] [Google Scholar]
  206. Travers A. A., Buckland R., Goman M., Le Grice S. S., Scaife J. G. A mutation affecting the sigma subunit of RNA polymerase changes transcriptional specificity. Nature. 1978 Jun 1;273(5661):354–358. doi: 10.1038/273354a0. [DOI] [PubMed] [Google Scholar]
  207. Travers A. Modulation of RNA polymerase specificity by ppGpp. Mol Gen Genet. 1976 Aug 19;147(2):225–232. doi: 10.1007/BF00267575. [DOI] [PubMed] [Google Scholar]
  208. Tsao Y. K., Lands W. E. Cell growth with trans fatty acids is affected by adenosine 3',5'-monophosphate and membrane fluidity. Science. 1980 Feb 15;207(4432):777–779. doi: 10.1126/science.6243419. [DOI] [PubMed] [Google Scholar]
  209. Tsuyumu S. "Self-catabolite repression" of pectate lyase in Erwinia carotovora. J Bacteriol. 1979 Feb;137(2):1035–1036. doi: 10.1128/jb.137.2.1035-1036.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  210. Ucker D. S., Signer E. R. Catabolite-repression-like phenomenon in Rhizobium meliloti. J Bacteriol. 1978 Dec;136(3):1197–1200. doi: 10.1128/jb.136.3.1197-1200.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  211. Ulitzur S., Yashphe J. An adenosine 3',5'-monophosphate-requiring mutant of the luminous bacteria Beneckea harveyi. Biochim Biophys Acta. 1975 Oct 9;404(2):321–328. doi: 10.1016/0304-4165(75)90339-6. [DOI] [PubMed] [Google Scholar]
  212. Ullmann A. Are cyclic AMP effects related to real physiological phenomena? Biochem Biophys Res Commun. 1974 Mar 25;57(2):348–352. doi: 10.1016/0006-291x(74)90936-x. [DOI] [PubMed] [Google Scholar]
  213. Ullmann A., Joseph E., Danchin A. Cyclic AMP as a modulator of polarity in polycistronic transcriptional units. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3194–3197. doi: 10.1073/pnas.76.7.3194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  214. Ullmann A., Tillier F., Monod J. Catabolite modulator factor: a possible mediator of catabolite repression in bacteria. Proc Natl Acad Sci U S A. 1976 Oct;73(10):3476–3479. doi: 10.1073/pnas.73.10.3476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  215. Upchurch R. G., Elkan G. H. The role of ammonia, L-glutamate, and cyclic adenosine 3',5'-monophosphate in the regulation of ammonia assimilation in Rhizobium japonicum. Biochim Biophys Acta. 1978 Jan 18;538(2):244–248. doi: 10.1016/0304-4165(78)90352-5. [DOI] [PubMed] [Google Scholar]
  216. Van Tiel-Menkvled G. J., Rezee A., De Graaf F. K. Production and excretion of cloacin DF13 by Escherichia coli harboring plasmid CloDF13. J Bacteriol. 1979 Nov;140(2):415–423. doi: 10.1128/jb.140.2.415-423.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  217. Venkateswaran P. S., Wu H. C. Isolation and characterization of a phosphonomycin-resistant mutant of Escherichia coli K-12. J Bacteriol. 1972 Jun;110(3):935–944. doi: 10.1128/jb.110.3.935-944.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  218. Wang J. Y., Koshland D. E., Jr Evidence for protein kinase activities in the prokaryote Salmonella typhimurium. J Biol Chem. 1978 Nov 10;253(21):7605–7608. [PubMed] [Google Scholar]
  219. Wanner B. L., Kodaira R., Neidhardt F. C. Regulation of lac operon expression: reappraisal of the theory of catabolite repression. J Bacteriol. 1978 Dec;136(3):947–954. doi: 10.1128/jb.136.3.947-954.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  220. Westwood A. W., Higgins I. J. The effect of cyclic AMP on catabolite repression of Isocitrate lyase in Nocardia salmonicolor (NCIB9701). J Gen Microbiol. 1976 Nov;97(1):133–135. doi: 10.1099/00221287-97-1-133. [DOI] [PubMed] [Google Scholar]
  221. Winkler U., Scholle H., Bohne L. Mutants of Serratia marcescens lacking cyclic nucleotide phosphodiesterase activity and requiring cyclic 3',5'-AMP for the utilization of various carbohydrates. Arch Microbiol. 1975 Jun 22;104(2):189–196. doi: 10.1007/BF00447323. [DOI] [PubMed] [Google Scholar]
  222. Wireman J. W., Dworkin M. Morphogenesis and developmental interactions in myxobacteria. Science. 1975 Aug 15;189(4202):516–523. doi: 10.1126/science.806967. [DOI] [PubMed] [Google Scholar]
  223. Wolff J., Cook G. H., Goldhammer A. R., Berkowitz S. A. Calmodulin activates prokaryotic adenylate cyclase. Proc Natl Acad Sci U S A. 1980 Jul;77(7):3841–3844. doi: 10.1073/pnas.77.7.3841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  224. Wright L. F., Milne D. P., Knowles C. J. The regulatory effects of growth rate and cyclic AMP levels on carbon catabolism and respiration in Escherichia coli K-12. Biochim Biophys Acta. 1979 Feb 19;583(1):73–80. doi: 10.1016/0304-4165(79)90311-8. [DOI] [PubMed] [Google Scholar]
  225. Yajko D. M., Zusman D. R. Changes in cyclic AMP levels during development in Myxococcus xanthus. J Bacteriol. 1978 Mar;133(3):1540–1542. doi: 10.1128/jb.133.3.1540-1542.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  226. Yamamoto T., Yokota T., Kaji A. Requirement of cyclic adenosine 3',5'-monophosphate for the thermosensitive effects of Rts1 in a cyclic adenosine 3',5'-monophosphate-less mutant of Escherichia coli. J Bacteriol. 1977 Oct;132(1):80–89. doi: 10.1128/jb.132.1.80-89.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  227. Yang H. L., Zubay G., Urm E., Heiness G., Cashel M. Effects of guanosine tetraphosphate, guanosine pentaphosphate, and beta-gamma methylenyl-guanosine pentaphosphate on gene expression of Escherichia coli in vitro. Proc Natl Acad Sci U S A. 1974 Jan;71(1):63–67. doi: 10.1073/pnas.71.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  228. Yang J. K., Bloom R. W., Epstein W. Catabolite and transient repression in Escherichia coli do not require enzyme I of the phosphotransferase system. J Bacteriol. 1979 Apr;138(1):275–279. doi: 10.1128/jb.138.1.275-279.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  229. Yeung K. H., Larsson G. C., Yamazaki H. Evidence against the involvement of adenosine 3',5'-cyclic monophosphate in glucose inhibition of beta-galactosidase induction in Bacillus megaterium. Can J Biochem. 1976 Oct;54(10):854–865. doi: 10.1139/o76-123. [DOI] [PubMed] [Google Scholar]
  230. Yokota T., Gots J. S. Requirement of adenosine 3', 5'-cyclic phosphate for flagella formation in Escherichia coli and Salmonella typhimurium. J Bacteriol. 1970 Aug;103(2):513–516. doi: 10.1128/jb.103.2.513-516.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Microbiological Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES