Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1988 Jul;85(14):5220–5223. doi: 10.1073/pnas.85.14.5220

Direct evidence for functional self-protein/Ia-molecule complexes in vivo.

R G Lorenz 1, P M Allen 1
PMCID: PMC281720  PMID: 2839836

Abstract

Through the development of a panel of murine hybridomas reactive to murine hemoglobin, we have been able to study the processing and presentation of self antigens by antigen-presenting cells. Our results demonstrate that peritoneal macrophages in vivo can process and potentially present the self-antigen hemoglobin. We have extended this finding to show that, directly after removal from the mouse, antigen-presenting cells from a variety of tissues stimulate our hemoglobin-specific hybridomas without any manipulation or addition of exogenous antigen. This constitutes direct functional proof that in a nondisease state self proteins are processed constitutively and can be presented in a fashion similar to that in which foreign antigens are presented. Our demonstration that antigen-presenting cells can process and potentially present self as well as foreign molecules implies that self-tolerance occurs at the level of the T cell. This constitutive processing and presentation of self antigens has potentially far-reaching implications in self-tolerance, autoimmunity, and alloreactivity.

Full text

PDF
5222

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abromson-Leeman S. R., Cantor H. Specificity of T cell clones for antigen and autologous major histocompatibility complex products determines specificity for foreign major histocompatibility complex products. J Exp Med. 1983 Aug 1;158(2):428–437. doi: 10.1084/jem.158.2.428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allen P. M., Beller D. I., Braun J., Unanue E. R. The handling of Listeria monocytogenes by macrophages: the search for an immunogenic molecule in antigen presentation. J Immunol. 1984 Jan;132(1):323–331. [PubMed] [Google Scholar]
  3. Allen P. M., Unanue E. R. Differential requirements for antigen processing by macrophages for lysozyme-specific T cell hybridomas. J Immunol. 1984 Mar;132(3):1077–1079. [PubMed] [Google Scholar]
  4. Babbitt B. P., Matsueda G., Haber E., Unanue E. R., Allen P. M. Antigenic competition at the level of peptide-Ia binding. Proc Natl Acad Sci U S A. 1986 Jun;83(12):4509–4513. doi: 10.1073/pnas.83.12.4509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bjorkman P. J., Saper M. A., Samraoui B., Bennett W. S., Strominger J. L., Wiley D. C. Structure of the human class I histocompatibility antigen, HLA-A2. Nature. 1987 Oct 8;329(6139):506–512. doi: 10.1038/329506a0. [DOI] [PubMed] [Google Scholar]
  6. Bogen B., Malissen B., Haas W. Idiotope-specific T cell clones that recognize syngeneic immunoglobulin fragments in the context of class II molecules. Eur J Immunol. 1986 Nov;16(11):1373–1378. doi: 10.1002/eji.1830161110. [DOI] [PubMed] [Google Scholar]
  7. Clayberger C., Parham P., Rothbard J., Ludwig D. S., Schoolnik G. K., Krensky A. M. HLA-A2 peptides can regulate cytolysis by human allogeneic T lymphocytes. Nature. 1987 Dec 24;330(6150):763–765. doi: 10.1038/330763a0. [DOI] [PubMed] [Google Scholar]
  8. Dos Reis G. A., Shevach E. M. Antigen-presenting cells from nonresponder strain 2 guinea pigs are fully competent to present bovine insulin B chain to responder strain 13 T cells. Evidence against a determinant selection model and in favor of a clonal deletion model of immune response gene function. J Exp Med. 1983 Apr 1;157(4):1287–1299. doi: 10.1084/jem.157.4.1287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gilman J. G. Mouse haemoglobin beta chains. Comparative sequence data on adult major and minor beta chains from two species, Mus musculus and Mus cervicolor. Biochem J. 1976 Oct 1;159(1):43–53. doi: 10.1042/bj1590043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Groves E. S., Singer A. Role of the H-2 complex in the induction of T cell tolerance to self minor histocompatibility antigens. J Exp Med. 1983 Nov 1;158(5):1483–1497. doi: 10.1084/jem.158.5.1483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lakey E. K., Margoliash E., Flouret G., Pierce S. K. Peptides related to the antigenic determinant block T cell recognition of the native protein as processed by antigen-presenting cells. Eur J Immunol. 1986 Jul;16(7):721–727. doi: 10.1002/eji.1830160702. [DOI] [PubMed] [Google Scholar]
  12. Matzinger P., Zamoyska R., Waldmann H. Self tolerance is H-2-restricted. Nature. 1984 Apr 19;308(5961):738–741. doi: 10.1038/308738a0. [DOI] [PubMed] [Google Scholar]
  13. Nossal G. J. Cellular mechanisms of immunologic tolerance. Annu Rev Immunol. 1983;1:33–62. doi: 10.1146/annurev.iy.01.040183.000341. [DOI] [PubMed] [Google Scholar]
  14. Oi V. T., Jones P. P., Goding J. W., Herzenberg L. A., Herzenberg L. A. Properties of monoclonal antibodies to mouse Ig allotypes, H-2, and Ia antigens. Curr Top Microbiol Immunol. 1978;81:115–120. doi: 10.1007/978-3-642-67448-8_18. [DOI] [PubMed] [Google Scholar]
  15. Ozato K., Mayer N., Sachs D. H. Hybridoma cell lines secreting monoclonal antibodies to mouse H-2 and Ia antigens. J Immunol. 1980 Feb;124(2):533–540. [PubMed] [Google Scholar]
  16. Raff M. C. Do antigen-presenting cells distinguish self from non-self? Nature. 1982 Aug 26;298(5877):791–792. doi: 10.1038/298791a0. [DOI] [PubMed] [Google Scholar]
  17. Rammensee H. G., Bevan M. J. Evidence from in vitro studies that tolerance to self antigens is MHC-restricted. Nature. 1984 Apr 19;308(5961):741–744. doi: 10.1038/308741a0. [DOI] [PubMed] [Google Scholar]
  18. Rock K. L., Benacerraf B., Abbas A. K. Antigen presentation by hapten-specific B lymphocytes. I. Role of surface immunoglobulin receptors. J Exp Med. 1984 Oct 1;160(4):1102–1113. doi: 10.1084/jem.160.4.1102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rosenthal A. S. Determinant selection and macrophage function in genetic control of the immune response. Immunol Rev. 1978;40:136–152. doi: 10.1111/j.1600-065x.1978.tb00404.x. [DOI] [PubMed] [Google Scholar]
  20. Rosenthal A. S., Shevach E. M. Function of macrophages in antigen recognition by guinea pig T lymphocytes. I. Requirement for histocompatible macrophages and lymphocytes. J Exp Med. 1973 Nov 1;138(5):1194–1212. doi: 10.1084/jem.138.5.1194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Russell E. S., McFarland E. C. Genetics of mouse hemoglobins. Ann N Y Acad Sci. 1974 Nov 29;241(0):25–38. doi: 10.1111/j.1749-6632.1974.tb21864.x. [DOI] [PubMed] [Google Scholar]
  22. Shimonkevitz R., Kappler J., Marrack P., Grey H. Antigen recognition by H-2-restricted T cells. I. Cell-free antigen processing. J Exp Med. 1983 Aug 1;158(2):303–316. doi: 10.1084/jem.158.2.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Unanue E. R. Antigen-presenting function of the macrophage. Annu Rev Immunol. 1984;2:395–428. doi: 10.1146/annurev.iy.02.040184.002143. [DOI] [PubMed] [Google Scholar]
  24. Weinberg D. S., Unanue E. R. Antigen-presenting function of alveolar macrophages: uptake and presentation of Listeria monocytogenes. J Immunol. 1981 Feb;126(2):794–799. [PubMed] [Google Scholar]
  25. Wekerle H., Schwab M., Linington C., Meyermann R. Antigen presentation in the peripheral nervous system: Schwann cells present endogenous myelin autoantigens to lymphocytes. Eur J Immunol. 1986 Dec;16(12):1551–1557. doi: 10.1002/eji.1830161214. [DOI] [PubMed] [Google Scholar]
  26. Whitney J. B., 3rd, Cobb R. R., Popp R. A., O'Rourke T. W. Detection of neutral amino acid substitutions in proteins. Proc Natl Acad Sci U S A. 1985 Nov;82(22):7646–7650. doi: 10.1073/pnas.82.22.7646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Winchester G., Sunshine G. H., Nardi N., Mitchison N. A. Antigen-presenting cells do not discriminate between self and nonself. Immunogenetics. 1984;19(6):487–491. doi: 10.1007/BF00403439. [DOI] [PubMed] [Google Scholar]
  28. Ziegler H. K., Unanue E. R. Decrease in macrophage antigen catabolism caused by ammonia and chloroquine is associated with inhibition of antigen presentation to T cells. Proc Natl Acad Sci U S A. 1982 Jan;79(1):175–178. doi: 10.1073/pnas.79.1.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Zinkernagel R. M., Doherty P. C. Restriction of in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature. 1974 Apr 19;248(5450):701–702. doi: 10.1038/248701a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES