Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1988 Sep;85(17):6523–6527. doi: 10.1073/pnas.85.17.6523

v-Ha-ras oncogene insertion: a model for tumor progression of human small cell lung cancer.

M Mabry 1, T Nakagawa 1, B D Nelkin 1, E McDowell 1, M Gesell 1, J C Eggleston 1, R A Casero Jr 1, S B Baylin 1
PMCID: PMC282005  PMID: 2842776

Abstract

Small cell lung cancer (SCLC) manifests a range of phenotypes in culture that may be important in understanding its relationship to non-SCLCs and to tumor progression events in patients. Most SCLC-derived cell lines, termed "classic" SCLC lines, have properties similar to SCLC tumors in patients, including high expression of neuroendocrine markers and low c-myc oncogene expression. A significant number of SCLC lines characterized as "biochemical or morphologic variant" SCLC lines have decreased levels of endocrine differentiation markers associated with increased proliferative indices, amplification of the c-myc oncogene, and growth patterns and biochemical markers more typical of non-SCLCs. To delineate further the relationships between these phenotypes and the molecular events involved, we have inserted the v-Ha-ras gene in SCLC cell lines with (biochemical variant) and without (classic) an amplified c-myc gene. These two SCLC subtypes had markedly different phenotypic responses to similar levels of expression of v-Ha-ras RNA. No biochemical or morphologic changes were observed in classic SCLC cells. In contrast, in biochemical variant SCLC cells, v-Ha-ras expression induced features typical of large cell undifferentiated lung carcinoma, including adherent monolayer growth patterns, increased cloning efficiency, increased levels of non-SCLC cell markers, ultrastructural characteristics and an acquired resistance to polyamine depletion typical of large cell carcinoma, but not SCLC, in vitro. Expression of v-Ha-ras in biochemical variant SCLC cells directly demonstrates that important transitions can occur between phenotypes of human lung cancer cells and that these may play a critical role in tumor progression events in patients. The findings provide a model system to study molecular events involved in tumor progression steps within a series of related tumor types.

Full text

PDF
6525

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abeloff M. D., Eggleston J. C., Mendelsohn G., Ettinger D. S., Baylin S. B. Changes in morphologic and biochemical characteristics of small cell carcinoma of the lung. A clinicopathologic study. Am J Med. 1979 May;66(5):757–764. doi: 10.1016/0002-9343(79)91113-6. [DOI] [PubMed] [Google Scholar]
  2. Bar-Sagi D., Feramisco J. R. Microinjection of the ras oncogene protein into PC12 cells induces morphological differentiation. Cell. 1985 Oct;42(3):841–848. doi: 10.1016/0092-8674(85)90280-6. [DOI] [PubMed] [Google Scholar]
  3. Beaven M. A., Wilcox G., Terpstra G. K. A microprocedure for the measurement of 14CO2 release from [14C]carboxyl-labeled amino acids. Anal Biochem. 1978 Feb;84(2):638–641. doi: 10.1016/0003-2697(78)90089-1. [DOI] [PubMed] [Google Scholar]
  4. Bernal S. D., Baylin S. B., Shaper J. H., Gazdar A. F., Chen L. B. Cytoskeleton-associated proteins of human lung cancer cells. Cancer Res. 1983 Apr;43(4):1798–1808. [PubMed] [Google Scholar]
  5. Birchmeier C., Broek D., Wigler M. ras proteins can induce meiosis in Xenopus oocytes. Cell. 1985 Dec;43(3 Pt 2):615–621. doi: 10.1016/0092-8674(85)90233-8. [DOI] [PubMed] [Google Scholar]
  6. Brereton H. D., Mathews M. M., Costa J., Kent C. H., Johnson R. E. Mixed anaplastic small-cell and squamous-cell carcinoma of the lung. Ann Intern Med. 1978 Jun;88(6):805–806. doi: 10.7326/0003-4819-88-6-805. [DOI] [PubMed] [Google Scholar]
  7. Carney D. N., Gazdar A. F., Bepler G., Guccion J. G., Marangos P. J., Moody T. W., Zweig M. H., Minna J. D. Establishment and identification of small cell lung cancer cell lines having classic and variant features. Cancer Res. 1985 Jun;45(6):2913–2923. [PubMed] [Google Scholar]
  8. Carney D. N., Mitchell J. B., Kinsella T. J. In vitro radiation and chemotherapy sensitivity of established cell lines of human small cell lung cancer and its large cell morphological variants. Cancer Res. 1983 Jun;43(6):2806–2811. [PubMed] [Google Scholar]
  9. Casero R. A., Jr, Baylin S. B., Nelkin B. D., Luk G. D. Human lung tumor sensitivity to difluoromethylornithine as related to ornithine decarboxylase messenger RNA levels. Biochem Biophys Res Commun. 1986 Jan 29;134(2):572–579. doi: 10.1016/s0006-291x(86)80458-2. [DOI] [PubMed] [Google Scholar]
  10. Casero R. A., Jr, Go B., Theiss H. W., Smith J., Baylin S. B., Luk G. D. Cytotoxic response of the relatively difluoromethylornithine-resistant human lung tumor cell line NCI H157 to the polyamine analogue N1,N8-bis(ethyl)spermidine. Cancer Res. 1987 Aug 1;47(15):3964–3967. [PubMed] [Google Scholar]
  11. Churg A. The fine structure of large cell undifferentiated carcinoma of the lung. Evidence for its relation to squamous cell carcinomas and adenocarcinomas. Hum Pathol. 1978 Mar;9(2):143–156. doi: 10.1016/s0046-8177(78)80105-1. [DOI] [PubMed] [Google Scholar]
  12. Comis R. L. Small cell carcinoma of the lung. Cancer Treat Rev. 1982 Sep;9(3):237–258. doi: 10.1016/s0305-7372(82)80009-1. [DOI] [PubMed] [Google Scholar]
  13. Gazdar A. F., Carney D. N., Minna J. D. The biology of non-small cell lung cancer. Semin Oncol. 1983 Mar;10(1):3–19. [PubMed] [Google Scholar]
  14. Gazdar A. F., Carney D. N., Nau M. M., Minna J. D. Characterization of variant subclasses of cell lines derived from small cell lung cancer having distinctive biochemical, morphological, and growth properties. Cancer Res. 1985 Jun;45(6):2924–2930. [PubMed] [Google Scholar]
  15. Gazdar A. F., Zweig M. H., Carney D. N., Van Steirteghen A. C., Baylin S. B., Minna J. D. Levels of creatine kinase and its BB isoenzyme in lung cancer specimens and cultures. Cancer Res. 1981 Jul;41(7):2773–2777. [PubMed] [Google Scholar]
  16. Goodwin G., Baylin S. B. Relationships between neuroendocrine differentiation and sensitivity to gamma-radiation in culture line OH-1 of human small cell lung carcinoma. Cancer Res. 1982 Apr;42(4):1361–1367. [PubMed] [Google Scholar]
  17. Goodwin G., Shaper J. H., Abeloff M. D., Mendelsohn G., Baylin S. B. Analysis of cell surface proteins delineates a differentiation pathway linking endocrine and nonendocrine human lung cancers. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3807–3811. doi: 10.1073/pnas.80.12.3807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Griffin C. A., Baylin S. B. Expression of the c-myb oncogene in human small cell lung carcinoma. Cancer Res. 1985 Jan;45(1):272–275. [PubMed] [Google Scholar]
  19. Hagag N., Halegoua S., Viola M. Inhibition of growth factor-induced differentiation of PC12 cells by microinjection of antibody to ras p21. Nature. 1986 Feb 20;319(6055):680–682. doi: 10.1038/319680a0. [DOI] [PubMed] [Google Scholar]
  20. Hirsch F. R., Osterlind K., Hansen H. H. The prognostic significance of histopathologic subtyping of small cell carcinoma of the lung according to the classification of the World Health Organization. A study of 375 consecutive patients. Cancer. 1983 Dec 1;52(11):2144–2150. doi: 10.1002/1097-0142(19831201)52:11<2144::aid-cncr2820521128>3.0.co;2-n. [DOI] [PubMed] [Google Scholar]
  21. Johnson B. E., Battey J., Linnoila I., Becker K. L., Makuch R. W., Snider R. H., Carney D. N., Minna J. D. Changes in the phenotype of human small cell lung cancer cell lines after transfection and expression of the c-myc proto-oncogene. J Clin Invest. 1986 Aug;78(2):525–532. doi: 10.1172/JCI112604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kuhajda F. P., Offutt L. E., Mendelsohn G. The distribution of carcinoembryonic antigen in breast carcinoma. Diagnostic and prognostic implications. Cancer. 1983 Oct 1;52(7):1257–1264. doi: 10.1002/1097-0142(19831001)52:7<1257::aid-cncr2820520721>3.0.co;2-6. [DOI] [PubMed] [Google Scholar]
  23. Kurzrock R., Gallick G. E., Gutterman J. U. Differential expression of p21ras gene products among histological subtypes of fresh primary human lung tumors. Cancer Res. 1986 Mar;46(3):1530–1534. [PubMed] [Google Scholar]
  24. Lacal J. C., Santos E., Notario V., Barbacid M., Yamazaki S., Kung H., Seamans C., McAndrew S., Crowl R. Expression of normal and transforming H-ras genes in Escherichia coli and purification of their encoded p21 proteins. Proc Natl Acad Sci U S A. 1984 Sep;81(17):5305–5309. doi: 10.1073/pnas.81.17.5305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Land H., Parada L. F., Weinberg R. A. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature. 1983 Aug 18;304(5927):596–602. doi: 10.1038/304596a0. [DOI] [PubMed] [Google Scholar]
  26. Little C. D., Nau M. M., Carney D. N., Gazdar A. F., Minna J. D. Amplification and expression of the c-myc oncogene in human lung cancer cell lines. Nature. 1983 Nov 10;306(5939):194–196. doi: 10.1038/306194a0. [DOI] [PubMed] [Google Scholar]
  27. Luk G. D., Goodwin G., Gazdar A. F., Baylin S. B. Growth-inhibitory effects of DL-alpha-difluoromethylornithine in the spectrum of human lung carcinoma cells in culture. Cancer Res. 1982 Aug;42(8):3070–3073. [PubMed] [Google Scholar]
  28. Luk G. D., Goodwin G., Marton L. J., Baylin S. B. Polyamines are necessary for the survival of human small-cell lung carcinoma in culture. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2355–2358. doi: 10.1073/pnas.78.4.2355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mamont P. S., Duchesne M. C., Grove J., Bey P. Anti-proliferative properties of DL-alpha-difluoromethyl ornithine in cultured cells. A consequence of the irreversible inhibition of ornithine decarboxylase. Biochem Biophys Res Commun. 1978 Mar 15;81(1):58–66. doi: 10.1016/0006-291x(78)91630-3. [DOI] [PubMed] [Google Scholar]
  30. McDowell E. M., Trump B. F. Pulmonary smell cell carcinoma showing tripartite differentiation in individual cells. Hum Pathol. 1981 Mar;12(3):286–294. doi: 10.1016/s0046-8177(81)80133-5. [DOI] [PubMed] [Google Scholar]
  31. Mendelsohn G., Wells S. A., Jr, Baylin S. B. Relationship of tissue carcinoembryonic antigen and calcitonin to tumor virulence in medullary thyroid carcinoma. An immunohistochemical study in early, localized, and virulent disseminated stages of disease. Cancer. 1984 Aug 15;54(4):657–662. doi: 10.1002/1097-0142(1984)54:4<657::aid-cncr2820540412>3.0.co;2-v. [DOI] [PubMed] [Google Scholar]
  32. Morstyn G., Russo A., Carney D. N., Karawya E., Wilson S. H., Mitchell J. B. Heterogeneity in the radiation survival curves and biochemical properties of human lung cancer cell lines. J Natl Cancer Inst. 1984 Oct;73(4):801–807. [PubMed] [Google Scholar]
  33. Nakagawa T., Mabry M., de Bustros A., Ihle J. N., Nelkin B. D., Baylin S. B. Introduction of v-Ha-ras oncogene induces differentiation of cultured human medullary thyroid carcinoma cells. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5923–5927. doi: 10.1073/pnas.84.16.5923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Nau M. M., Brooks B. J., Battey J., Sausville E., Gazdar A. F., Kirsch I. R., McBride O. W., Bertness V., Hollis G. F., Minna J. D. L-myc, a new myc-related gene amplified and expressed in human small cell lung cancer. Nature. 1985 Nov 7;318(6041):69–73. doi: 10.1038/318069a0. [DOI] [PubMed] [Google Scholar]
  35. Noda M., Ko M., Ogura A., Liu D. G., Amano T., Takano T., Ikawa Y. Sarcoma viruses carrying ras oncogenes induce differentiation-associated properties in a neuronal cell line. Nature. 1985 Nov 7;318(6041):73–75. doi: 10.1038/318073a0. [DOI] [PubMed] [Google Scholar]
  36. Radice P. A., Matthews M. J., Ihde D. C., Gazdar A. F., Carney D. N., Bunn P. A., Cohen M. H., Fossieck B. E., Makuch R. W., Minna J. D. The clinical behavior of "mixed" small cell/large cell bronchogenic carcinoma compared to "pure" small cell subtypes. Cancer. 1982 Dec 15;50(12):2894–2902. doi: 10.1002/1097-0142(19821215)50:12<2894::aid-cncr2820501232>3.0.co;2-g. [DOI] [PubMed] [Google Scholar]
  37. Rein A., Keller J., Schultz A. M., Holmes K. L., Medicus R., Ihle J. N. Infection of immune mast cells by Harvey sarcoma virus: immortalization without loss of requirement for interleukin-3. Mol Cell Biol. 1985 Sep;5(9):2257–2264. doi: 10.1128/mcb.5.9.2257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Rein A., Schultz A. M., Bader J. P., Bassin R. H. Inhibitors of glycosylation reverse retroviral interference. Virology. 1982 May;119(1):185–192. doi: 10.1016/0042-6822(82)90075-7. [DOI] [PubMed] [Google Scholar]
  39. Rodenhuis S., van de Wetering M. L., Mooi W. J., Evers S. G., van Zandwijk N., Bos J. L. Mutational activation of the K-ras oncogene. A possible pathogenetic factor in adenocarcinoma of the lung. N Engl J Med. 1987 Oct 8;317(15):929–935. doi: 10.1056/NEJM198710083171504. [DOI] [PubMed] [Google Scholar]
  40. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  41. Sun N. C., Edgington T. D., Carpentier C. L., McAfee W., Terry R., Bateman J. Immunohistochemical localization of carcinoembryonic antigen (CEA), CEA-S, and nonspecific cross-reacting antigen (NCA) in carcinomas of lung. Cancer. 1983 Nov 1;52(9):1632–1641. doi: 10.1002/1097-0142(19831101)52:9<1632::aid-cncr2820520915>3.0.co;2-q. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES