Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1988 Sep;85(18):7001–7005. doi: 10.1073/pnas.85.18.7001

Regulatory interactions of calmodulin-binding proteins: phosphorylation of calcineurin by autophosphorylated Ca2+/calmodulin-dependent protein kinase II.

Y Hashimoto 1, M M King 1, T R Soderling 1
PMCID: PMC282107  PMID: 2842800

Abstract

The Ca2+/calmodulin (CaM)-dependent protein phosphatase calcineurin is rapidly phosphorylated (0.8 mol of 32PO4 per mol of 60-kDa subunit of calcineurin) by brain Ca2+/CaM-dependent protein kinase II (CaM-kinase II). This reaction requires the autophosphorylated, Ca2+-independent form of CaM-kinase II since Ca2+/CaM binding to calcineurin inhibits phosphorylation. However, the phosphorylation reaction does require Ca2+, presumably acting through the 19-kDa subunit of calcineurin. Calcineurin is a good substrate for CaM-kinase II, with a Km of 19 microM and Vmax of 2.4 mumol/min per mg. Phosphorylation of calcineurin changed its phosphatase activity with either a 2-fold increase in Km (32P-labeled myosin light chain as substrate) or a 50% decrease in Vmax (p-nitrophenyl phosphate as substrate). The phosphorylated calcineurin exhibited very slow autodephosphorylation (0.09 nmol/min per mg) but was effectively dephosphorylated by brain protein phosphatase IIA. Dephosphorylation, like phosphorylation, was blocked by high concentrations of Ca2+/CaM and stimulated by Ca2+ alone. Thus calcineurin has a regulatory phosphorylation site that is phosphorylated by the Ca2+-independent form of CaM-kinase II and blocked by high concentrations of Ca2+/CaM.

Full text

PDF
7002

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett M. K., Kennedy M. B. Deduced primary structure of the beta subunit of brain type II Ca2+/calmodulin-dependent protein kinase determined by molecular cloning. Proc Natl Acad Sci U S A. 1987 Apr;84(7):1794–1798. doi: 10.1073/pnas.84.7.1794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Cohen P. The subunit structure of rabbit-skeletal-muscle phosphorylase kinase, and the molecular basis of its activation reactions. Eur J Biochem. 1973 Apr 2;34(1):1–14. doi: 10.1111/j.1432-1033.1973.tb02721.x. [DOI] [PubMed] [Google Scholar]
  4. Conti M. A., Adelstein R. S. The relationship between calmodulin binding and phosphorylation of smooth muscle myosin kinase by the catalytic subunit of 3':5' cAMP-dependent protein kinase. J Biol Chem. 1981 Apr 10;256(7):3178–3181. [PubMed] [Google Scholar]
  5. Cox D. E., Edstrom R. D. Inhibition by calmodulin of the cAMP-dependent protein kinase activation of phosphorylase kinase. J Biol Chem. 1982 Nov 10;257(21):12728–12733. [PubMed] [Google Scholar]
  6. Erondu N. E., Kennedy M. B. Regional distribution of type II Ca2+/calmodulin-dependent protein kinase in rat brain. J Neurosci. 1985 Dec;5(12):3270–3277. doi: 10.1523/JNEUROSCI.05-12-03270.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. FISCHER E. H., KREBS E. G. The isolation and crystallization of rabbit skeletal muscle phosphorylase b. J Biol Chem. 1958 Mar;231(1):65–71. [PubMed] [Google Scholar]
  8. Gopalakrishna R., Anderson W. B. Ca2+-induced hydrophobic site on calmodulin: application for purification of calmodulin by phenyl-Sepharose affinity chromatography. Biochem Biophys Res Commun. 1982 Jan 29;104(2):830–836. doi: 10.1016/0006-291x(82)90712-4. [DOI] [PubMed] [Google Scholar]
  9. Goto S., Yamamoto H., Fukunaga K., Iwasa T., Matsukado Y., Miyamoto E. Dephosphorylation of microtubule-associated protein 2, tau factor, and tubulin by calcineurin. J Neurochem. 1985 Jul;45(1):276–283. doi: 10.1111/j.1471-4159.1985.tb05504.x. [DOI] [PubMed] [Google Scholar]
  10. Hanley R. M., Means A. R., Ono T., Kemp B. E., Burgin K. E., Waxham N., Kelly P. T. Functional analysis of a complementary DNA for the 50-kilodalton subunit of calmodulin kinase II. Science. 1987 Jul 17;237(4812):293–297. doi: 10.1126/science.3037704. [DOI] [PubMed] [Google Scholar]
  11. Hashimoto Y., Schworer C. M., Colbran R. J., Soderling T. R. Autophosphorylation of Ca2+/calmodulin-dependent protein kinase II. Effects on total and Ca2+-independent activities and kinetic parameters. J Biol Chem. 1987 Jun 15;262(17):8051–8055. [PubMed] [Google Scholar]
  12. Hashimoto Y., Soderling T. R. Calcium . calmodulin-dependent protein kinase II and calcium . phospholipid-dependent protein kinase activities in rat tissues assayed with a synthetic peptide. Arch Biochem Biophys. 1987 Feb 1;252(2):418–425. doi: 10.1016/0003-9861(87)90048-8. [DOI] [PubMed] [Google Scholar]
  13. Hemmings B. A., Yellowlees D., Kernohan J. C., Cohen P. Purification of glycogen synthase kinase 3 from rabbit skeletal muscle. Copurification with the activating factor (FA) of the (Mg-ATP) dependent protein phosphatase. Eur J Biochem. 1981 Oct;119(3):443–451. doi: 10.1111/j.1432-1033.1981.tb05628.x. [DOI] [PubMed] [Google Scholar]
  14. Huang F. L., Glinsmann W. H. Separation and characterization of two phosphorylase phosphatase inhibitors from rabbit skeletal muscle. Eur J Biochem. 1976 Nov 15;70(2):419–426. doi: 10.1111/j.1432-1033.1976.tb11032.x. [DOI] [PubMed] [Google Scholar]
  15. Hubbard M. J., Klee C. B. Calmodulin binding by calcineurin. Ligand-induced renaturation of protein immobilized on nitrocellulose. J Biol Chem. 1987 Nov 5;262(31):15062–15070. [PubMed] [Google Scholar]
  16. Ingebritsen T. S., Cohen P. Protein phosphatases: properties and role in cellular regulation. Science. 1983 Jul 22;221(4608):331–338. doi: 10.1126/science.6306765. [DOI] [PubMed] [Google Scholar]
  17. Johansen J. W., Ingebritsen T. S. Phosphorylation and inactivation of protein phosphatase 1 by pp60v-src. Proc Natl Acad Sci U S A. 1986 Jan;83(2):207–211. doi: 10.1073/pnas.83.2.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kelly P. T., McGuinness T. L., Greengard P. Evidence that the major postsynaptic density protein is a component of a Ca2+/calmodulin-dependent protein kinase. Proc Natl Acad Sci U S A. 1984 Feb;81(3):945–949. doi: 10.1073/pnas.81.3.945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Khatra B. S. Subunit structure and properties of the glycogen-bound phosphoprotein phosphatase from skeletal muscle. J Biol Chem. 1986 Jul 5;261(19):8944–8952. [PubMed] [Google Scholar]
  20. King M. M., Huang C. Y. The calmodulin-dependent activation and deactivation of the phosphoprotein phosphatase, calcineurin, and the effect of nucleotides, pyrophosphate, and divalent metal ions. Identification of calcineurin as a Zn and Fe metalloenzyme. J Biol Chem. 1984 Jul 25;259(14):8847–8856. [PubMed] [Google Scholar]
  21. Klee C. B., Crouch T. H., Krinks M. H. Calcineurin: a calcium- and calmodulin-binding protein of the nervous system. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6270–6273. doi: 10.1073/pnas.76.12.6270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Klee C. B., Krinks M. H., Manalan A. S., Cohen P., Stewart A. A. Isolation and characterization of bovine brain calcineurin: a calmodulin-stimulated protein phosphatase. Methods Enzymol. 1983;102:227–244. doi: 10.1016/s0076-6879(83)02024-8. [DOI] [PubMed] [Google Scholar]
  23. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  24. Lai Y., Nairn A. C., Greengard P. Autophosphorylation reversibly regulates the Ca2+/calmodulin-dependence of Ca2+/calmodulin-dependent protein kinase II. Proc Natl Acad Sci U S A. 1986 Jun;83(12):4253–4257. doi: 10.1073/pnas.83.12.4253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. LeVine H., 3rd, Sahyoun N. E., Cuatrecasas P. Calmodulin binding to the cytoskeletal neuronal calmodulin-dependent protein kinase is regulated by autophosphorylation. Proc Natl Acad Sci U S A. 1985 Jan;82(2):287–291. doi: 10.1073/pnas.82.2.287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lin C. R., Kapiloff M. S., Durgerian S., Tatemoto K., Russo A. F., Hanson P., Schulman H., Rosenfeld M. G. Molecular cloning of a brain-specific calcium/calmodulin-dependent protein kinase. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5962–5966. doi: 10.1073/pnas.84.16.5962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Miller S. G., Kennedy M. B. Regulation of brain type II Ca2+/calmodulin-dependent protein kinase by autophosphorylation: a Ca2+-triggered molecular switch. Cell. 1986 Mar 28;44(6):861–870. doi: 10.1016/0092-8674(86)90008-5. [DOI] [PubMed] [Google Scholar]
  28. Nairn A. C., Hemmings H. C., Jr, Greengard P. Protein kinases in the brain. Annu Rev Biochem. 1985;54:931–976. doi: 10.1146/annurev.bi.54.070185.004435. [DOI] [PubMed] [Google Scholar]
  29. Nimmo G. A., Cohen P. The regulation of glycogen metabolism. Purification and characterisation of protein phosphatase inhibitor-1 from rabbit skeletal muscle. Eur J Biochem. 1978 Jun 15;87(2):341–351. doi: 10.1111/j.1432-1033.1978.tb12383.x. [DOI] [PubMed] [Google Scholar]
  30. Nishikawa M., Shirakawa S., Adelstein R. S. Phosphorylation of smooth muscle myosin light chain kinase by protein kinase C. Comparative study of the phosphorylated sites. J Biol Chem. 1985 Jul 25;260(15):8978–8983. [PubMed] [Google Scholar]
  31. Nishikawa M., de Lanerolle P., Lincoln T. M., Adelstein R. S. Phosphorylation of mammalian myosin light chain kinases by the catalytic subunit of cyclic AMP-dependent protein kinase and by cyclic GMP-dependent protein kinase. J Biol Chem. 1984 Jul 10;259(13):8429–8436. [PubMed] [Google Scholar]
  32. Ouimet C. C., McGuinness T. L., Greengard P. Immunocytochemical localization of calcium/calmodulin-dependent protein kinase II in rat brain. Proc Natl Acad Sci U S A. 1984 Sep;81(17):5604–5608. doi: 10.1073/pnas.81.17.5604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Pallen C. J., Wang J. H. A multifunctional calmodulin-stimulated phosphatase. Arch Biochem Biophys. 1985 Mar;237(2):281–291. doi: 10.1016/0003-9861(85)90279-6. [DOI] [PubMed] [Google Scholar]
  34. Pallen C. J., Wang J. H. Calmodulin-stimulated dephosphorylation of p-nitrophenyl phosphate and free phosphotyrosine by calcineurin. J Biol Chem. 1983 Jul 25;258(14):8550–8553. [PubMed] [Google Scholar]
  35. Politino M., King M. M. Calcium- and calmodulin-sensitive interactions of calcineurin with phospholipids. J Biol Chem. 1987 Jul 25;262(21):10109–10113. [PubMed] [Google Scholar]
  36. Roskoski R., Jr Assays of protein kinase. Methods Enzymol. 1983;99:3–6. doi: 10.1016/0076-6879(83)99034-1. [DOI] [PubMed] [Google Scholar]
  37. Schworer C. M., Colbran R. J., Soderling T. R. Reversible generation of a Ca2+-independent form of Ca2+(calmodulin)-dependent protein kinase II by an autophosphorylation mechanism. J Biol Chem. 1986 Jul 5;261(19):8581–8584. [PubMed] [Google Scholar]
  38. Schworer C. M., McClure R. W., Soderling T. R. Calmodulin-dependent protein kinases purified from rat brain and rabbit liver. Arch Biochem Biophys. 1985 Oct;242(1):137–145. doi: 10.1016/0003-9861(85)90487-4. [DOI] [PubMed] [Google Scholar]
  39. Schworer C. M., el-Maghrabi M. R., Pilkis S. J., Soderling T. R. Phosphorylation of L-type pyruvate kinase by a Ca2+/calmodulin-dependent protein kinase. J Biol Chem. 1985 Oct 25;260(24):13018–13022. [PubMed] [Google Scholar]
  40. Singh T. J., Wang J. H. Phosphorylation of calcineurin by glycogen synthase (casein) kinase-1. Biochem Cell Biol. 1987 Oct;65(10):917–921. doi: 10.1139/o87-118. [DOI] [PubMed] [Google Scholar]
  41. Tallant E. A., Cheung W. Y. Activation of bovine brain calmodulin-dependent protein phosphatase by limited trypsinization. Biochemistry. 1984 Feb 28;23(5):973–979. doi: 10.1021/bi00300a027. [DOI] [PubMed] [Google Scholar]
  42. Tung H. Y. Phosphorylation of the calmodulin-dependent protein phosphatase by protein kinase C. Biochem Biophys Res Commun. 1986 Jul 31;138(2):783–788. doi: 10.1016/s0006-291x(86)80565-4. [DOI] [PubMed] [Google Scholar]
  43. Walseth T. F., Johnson R. A. The enzymatic preparation of [alpha-(32)P]nucleoside triphosphates, cyclic [32P] AMP, and cyclic [32P] GMP. Biochim Biophys Acta. 1979 Mar 28;562(1):11–31. doi: 10.1016/0005-2787(79)90122-9. [DOI] [PubMed] [Google Scholar]
  44. Winkler M. A., Merat D. L., Tallant E. A., Hawkins S., Cheung W. Y. Catalytic site of calmodulin-dependent protein phosphatase from bovine brain resides in subunit A. Proc Natl Acad Sci U S A. 1984 May;81(10):3054–3058. doi: 10.1073/pnas.81.10.3054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Yang S. D., Yu J. S., Fong Y. L. Purification and characterization of two inactive/latent protein phosphatases from pig brain. J Biol Chem. 1986 Apr 25;261(12):5590–5596. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES