Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1988 Oct;85(19):7399–7403. doi: 10.1073/pnas.85.19.7399

Rheoreceptors in the carotid sinus of dog.

G Hajduczok 1, M W Chapleau 1, F M Abboud 1
PMCID: PMC282194  PMID: 3174642

Abstract

The arterial baroreceptors are known to be sensitive to changes in pressure but there are no known sensors in the cardiovascular system for changes in flow. We tested the hypothesis that changes in flow at constant pressure alter carotid sinus multi-unit nerve activity. In anesthetized dogs with vascularly isolated carotid sinuses, increases in flow at constant pressure resulted in increases in carotid sinus nerve activity in relation to the increase in flow. The increased activity during flow was not caused by an increase in strain of the sinus wall but was directly related to the increase in shear stress (36.6 +/- 11.7% increase in activity per dyne/cm2; 1 dyne = 0.1 MN). The pressure threshold of single baroreceptor units was determined during a slow pressure ramp with and without flow. Flow caused a significant decrease in pressure threshold from 81.1 +/- 6.1 mmHg (1 mmHg = 1.333 x 10(2) Pa) in the absence of flow to 69.3 +/- 5.7 mmHg with flow. We conclude that there are arterial "rheoreceptors" in the carotid sinus that respond to flow at constant pressure and strain. The results with single baroreceptor units indicate also that baroreceptors may be sensitized by increases in flow. Thus, changes in flow per se in addition to changes in arterial pressure may be important determinants of reflex circulatory adjustments.

Full text

PDF
7402

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arndt J. O., Dörrenhaus A., Wiecken H. The aortic arch baroreceptor response to static and dynamic stretches in an isolated aorta-depressor nerve preparation of cats in vitro. J Physiol. 1975 Oct;252(1):59–78. doi: 10.1113/jphysiol.1975.sp011134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baertschi A. J., Gann D. S. Responses of atrial mechanoreceptors to pulsation of atrial volume. J Physiol. 1977 Dec;273(1):1–21. doi: 10.1113/jphysiol.1977.sp012078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brown A. M. Receptors under pressure. An update on baroreceptors. Circ Res. 1980 Jan;46(1):1–10. doi: 10.1161/01.res.46.1.1. [DOI] [PubMed] [Google Scholar]
  4. Chapleau M. W., Abboud F. M. Contrasting effects of static and pulsatile pressure on carotid baroreceptor activity in dogs. Circ Res. 1987 Nov;61(5):648–658. doi: 10.1161/01.res.61.5.648. [DOI] [PubMed] [Google Scholar]
  5. Chapleau M. W., Hajduczok G., Shasby D. M., Abboud F. M. Activated endothelial cells in culture suppress baroreceptors in the carotid sinus of dog. Hypertension. 1988 Jun;11(6 Pt 2):586–590. doi: 10.1161/01.hyp.11.6.586. [DOI] [PubMed] [Google Scholar]
  6. Charlton J. D., Baertschi A. J. Responses of aortic baroreceptors to changes of aortic blood flow and pressure in rat. Am J Physiol. 1982 Apr;242(4):H520–H525. doi: 10.1152/ajpheart.1982.242.4.H520. [DOI] [PubMed] [Google Scholar]
  7. Coleridge H. M., Coleridge J. C., Schultz H. D. Characteristics of C fibre baroreceptors in the carotid sinus of dogs. J Physiol. 1987 Dec;394:291–313. doi: 10.1113/jphysiol.1987.sp016871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Davies P. F., Dewey C. F., Jr, Bussolari S. R., Gordon E. J., Gimbrone M. A., Jr Influence of hemodynamic forces on vascular endothelial function. In vitro studies of shear stress and pinocytosis in bovine aortic cells. J Clin Invest. 1984 Apr;73(4):1121–1129. doi: 10.1172/JCI111298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Davies P. F., Remuzzi A., Gordon E. J., Dewey C. F., Jr, Gimbrone M. A., Jr Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro. Proc Natl Acad Sci U S A. 1986 Apr;83(7):2114–2117. doi: 10.1073/pnas.83.7.2114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dole W. P., O'Rourke R. A. Pathophysiology and management of cardiogenic shock. Curr Probl Cardiol. 1983 Jun;8(3):1–72. doi: 10.1016/0146-2806(83)90033-6. [DOI] [PubMed] [Google Scholar]
  11. Frangos J. A., Eskin S. G., McIntire L. V., Ives C. L. Flow effects on prostacyclin production by cultured human endothelial cells. Science. 1985 Mar 22;227(4693):1477–1479. doi: 10.1126/science.3883488. [DOI] [PubMed] [Google Scholar]
  12. Furchgott R. F. Role of endothelium in responses of vascular smooth muscle. Circ Res. 1983 Nov;53(5):557–573. doi: 10.1161/01.res.53.5.557. [DOI] [PubMed] [Google Scholar]
  13. Grabowski E. F., Jaffe E. A., Weksler B. B. Prostacyclin production by cultured endothelial cell monolayers exposed to step increases in shear stress. J Lab Clin Med. 1985 Jan;105(1):36–43. [PubMed] [Google Scholar]
  14. Kaufman M. P., Baker D. G., Coleridge H. M., Coleridge J. C. Stimulation by bradykinin of afferent vagal C-fibers with chemosensitive endings in the heart and aorta of the dog. Circ Res. 1980 Apr;46(4):476–484. doi: 10.1161/01.res.46.4.476. [DOI] [PubMed] [Google Scholar]
  15. Kirchheim H. R. Systemic arterial baroreceptor reflexes. Physiol Rev. 1976 Jan;56(1):100–177. doi: 10.1152/physrev.1976.56.1.100. [DOI] [PubMed] [Google Scholar]
  16. LANDGREN S. On the excitation mechanism of the carotid baroceptors. Acta Physiol Scand. 1952 Jul 17;26(1):1–34. doi: 10.1111/j.1748-1716.1952.tb00889.x. [DOI] [PubMed] [Google Scholar]
  17. Lansman J. B. Endothelial mechanosensors. Going with the flow. Nature. 1988 Feb 11;331(6156):481–482. doi: 10.1038/331481a0. [DOI] [PubMed] [Google Scholar]
  18. Lansman J. B., Hallam T. J., Rink T. J. Single stretch-activated ion channels in vascular endothelial cells as mechanotransducers? 1987 Feb 26-Mar 4Nature. 325(6107):811–813. doi: 10.1038/325811a0. [DOI] [PubMed] [Google Scholar]
  19. Lee M. C., Reid I. A., Ramsay D. J. Blood flows in the maxillocarotid anastomoses and internal carotid artery of conscious dogs. Anat Rec. 1986 Jun;215(2):192–197. doi: 10.1002/ar.1092150212. [DOI] [PubMed] [Google Scholar]
  20. Lutz R. J., Cannon J. N., Bischoff K. B., Dedrick R. L., Stiles R. K., Fry D. L. Wall shear stress distribution in a model canine artery during steady flow. Circ Res. 1977 Sep;41(3):391–399. doi: 10.1161/01.res.41.3.391. [DOI] [PubMed] [Google Scholar]
  21. Miller V. M., Aarhus L. L., Vanhoutte P. M. Modulation of endothelium-dependent responses by chronic alterations of blood flow. Am J Physiol. 1986 Sep;251(3 Pt 2):H520–H527. doi: 10.1152/ajpheart.1986.251.3.H520. [DOI] [PubMed] [Google Scholar]
  22. Nishijima H., Weil M. H., Shubin H., Cavanilles J. Hemodynamic and metabolic studies on shock associated with gram negative bacteremia. Medicine (Baltimore) 1973 Jul;52(4):287–294. doi: 10.1097/00005792-197307000-00007. [DOI] [PubMed] [Google Scholar]
  23. Olesen S. P., Clapham D. E., Davies P. F. Haemodynamic shear stress activates a K+ current in vascular endothelial cells. Nature. 1988 Jan 14;331(6152):168–170. doi: 10.1038/331168a0. [DOI] [PubMed] [Google Scholar]
  24. Pagani M., Baig H., Sherman A., Manders W. T., Quinn P., Patrick T., Franklin D., Vatner S. F. Measurement of multiple simultaneous small dimensions and study of arterial pressure-dimension relations in conscious animals. Am J Physiol. 1978 Nov;235(5):H610–H617. doi: 10.1152/ajpheart.1978.235.5.H610. [DOI] [PubMed] [Google Scholar]
  25. Rubanyi G. M., Romero J. C., Vanhoutte P. M. Flow-induced release of endothelium-derived relaxing factor. Am J Physiol. 1986 Jun;250(6 Pt 2):H1145–H1149. doi: 10.1152/ajpheart.1986.250.6.H1145. [DOI] [PubMed] [Google Scholar]
  26. Vidrio H., Hong E. Vascular tone and reactivity to serotonin in the internal and external carotid vascular beds of the dog. J Pharmacol Exp Ther. 1976 Apr;197(1):49–56. [PubMed] [Google Scholar]
  27. Weksler B. B., Ley C. W., Jaffe E. A. Stimulation of endothelial cell prostacyclin production by thrombin, trypsin, and the ionophore A 23187. J Clin Invest. 1978 Nov;62(5):923–930. doi: 10.1172/JCI109220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Yanagisawa M., Kurihara H., Kimura S., Tomobe Y., Kobayashi M., Mitsui Y., Yazaki Y., Goto K., Masaki T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988 Mar 31;332(6163):411–415. doi: 10.1038/332411a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES