Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1970 Feb;65(2):375–382. doi: 10.1073/pnas.65.2.375

Mechanism of Viral Carcinogenesis by DNA Mammalian Viruses, VII. Viral Genes Transcribed in Adenovirus Type 2 Infected and Transformed Cells*

Kei Fujinaga 1,, Maurice Green 1,
PMCID: PMC282913  PMID: 5263771

Abstract

DNA-RNA hybridization-competition experiments were used to compare the virus-specific RNA sequences synthesized during productive infection with human adenovirus type 2 with those synthesized in virus-free adenovirus type 2 transformed cells. The „early” virus-specific RNA present at six hours after infection, prior to the onset of viral DNA synthesis, represents 8-20 percent (2 to 10 genes) of the viral genome. All viral RNA sequences synthesized early are also present „late,” at 18 hours after infection. The base sequences transcribed in transformed cells are homologous to approximately 50 per cent of the sequences transcribed early after infection. Thus only 4 to 10 per cent of the viral genome, representing 1 to 5 viral genes, are transcribed in adenovirus type 2 transformed cells. The virus-specific RNA synthesized 18 hours after infection was not found in transformed cells, suggesting that either these late viral genes are not present or are not transcribed in adenovirus type 2 transformed cells.

Full text

PDF
378

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aloni Y., Winocour E., Sachs L. Characterization of the simian virus 40-specific RNA in virus-yielding and transformed cells. J Mol Biol. 1968 Feb 14;31(3):415–429. doi: 10.1016/0022-2836(68)90418-x. [DOI] [PubMed] [Google Scholar]
  2. EAGLE H. Amino acid metabolism in mammalian cell cultures. Science. 1959 Aug 21;130(3373):432–437. doi: 10.1126/science.130.3373.432. [DOI] [PubMed] [Google Scholar]
  3. Freeman A. E., Black P. H., Vanderpool E. A., Henry P. H., Austin J. B., Huebner R. J. Transformation of primary rat embryo cells by adenovirus type 2. Proc Natl Acad Sci U S A. 1967 Sep;58(3):1205–1212. doi: 10.1073/pnas.58.3.1205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fujinaga K., Green M. Mechanism of viral carcinogenesis by DNA mammalian viruses. V. Properties of purified viral-specific RNA from human adenovirus-induced tumor cells. J Mol Biol. 1968 Jan 14;31(1):63–73. doi: 10.1016/0022-2836(68)90054-5. [DOI] [PubMed] [Google Scholar]
  5. Fujinaga K., Green M. Mechanism of viral carcinogenesis by deoxyribonucleic acid mammalian viruses. IV. Related virus-specific ribonucleic acids in tumor cells induced by "highly" oncogenic adenovirus types 12, 18, and 31. J Virol. 1967 Jun;1(3):576–582. doi: 10.1128/jvi.1.3.576-582.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fujinaga K., Mak S., Green M. A method for determining the fraction of the viral genome transcribed during infection and its application to adenovirus-infected cells. Proc Natl Acad Sci U S A. 1968 Jul;60(3):959–966. doi: 10.1073/pnas.60.3.959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fujinaga K., Piña M., Green M. The mechanism of viral carcinogenesis by DNA mammalian viruses. VI. A new class of virus-specific RNA molecules in cells transformed by group C human adenoviruses. Proc Natl Acad Sci U S A. 1969 Sep;64(1):255–262. doi: 10.1073/pnas.64.1.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. GREEN M. Biochemical studies on adenovirus multiplication. III. Requirement for DNA synthesis. Virology. 1962 Dec;18:601–613. doi: 10.1016/0042-6822(62)90063-6. [DOI] [PubMed] [Google Scholar]
  9. GREEN M., PINA M. BIOCHEMICAL STUDIES ON ADENOVIRUS MULTIPLICATION, VI. PROPERTIES OF HIGHLY PURIFIED TUMORIGENIC HUMAN ADENOVIRUSES AND THEIR DNA. Proc Natl Acad Sci U S A. 1964 Jun;51:1251–1259. doi: 10.1073/pnas.51.6.1251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gillespie D., Spiegelman S. A quantitative assay for DNA-RNA hybrids with DNA immobilized on a membrane. J Mol Biol. 1965 Jul;12(3):829–842. doi: 10.1016/s0022-2836(65)80331-x. [DOI] [PubMed] [Google Scholar]
  11. Green M., Piña M., Kimes R., Wensink P. C., MacHattie L. A., Thomas C. A., Jr Adenovirus DNA. I. Molecular weight and conformation. Proc Natl Acad Sci U S A. 1967 May;57(5):1302–1309. doi: 10.1073/pnas.57.5.1302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. HUEBNER R. J., ROWE W. P., TURNER H. C., LANE W. T. SPECIFIC ADENOVIRUS COMPLEMENT-FIXING ANTIGENS IN VIRUS-FREE HAMSTER AND RAT TUMORS. Proc Natl Acad Sci U S A. 1963 Aug;50:379–389. doi: 10.1073/pnas.50.2.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Koprowski H., Jensen F. C., Steplewski Z. Activation of production of infectious tumor virus SV40 in heterokaryon cultures. Proc Natl Acad Sci U S A. 1967 Jul;58(1):127–133. doi: 10.1073/pnas.58.1.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Oda K., Dulbecco R. Regulation of transcription of the SV40 DNA in productively infected and in transformed cells. Proc Natl Acad Sci U S A. 1968 Jun;60(2):525–532. doi: 10.1073/pnas.60.2.525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. POLASA H., GREEN M. BIOCHEMICAL STUDIES ON ADENOVIRUS MULTIPLICATION. 8. ANALYSIS OF PROTEIN SYNTHESIS. Virology. 1965 Jan;25:68–79. doi: 10.1016/0042-6822(65)90253-9. [DOI] [PubMed] [Google Scholar]
  16. Thomas D. C., Green M. Biochemical studies on adenovirus multiplication. XV. Transcription of the adenovirus type II genome during productive infection. Virology. 1969 Oct;39(2):205–210. doi: 10.1016/0042-6822(69)90040-3. [DOI] [PubMed] [Google Scholar]
  17. Tockstein G., Polasa H., Piña M., Green M. A simple purification procedure for adenovirus type 12T and tumor antigens and some of their properties. Virology. 1968 Nov;36(3):377–386. doi: 10.1016/0042-6822(68)90162-1. [DOI] [PubMed] [Google Scholar]
  18. Watkins J. F., Dulbecco R. Production of SV40 virus in heterokaryons of transformed and susceptible cells. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1396–1403. doi: 10.1073/pnas.58.4.1396. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES