Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1970 Jul;66(3):738–744. doi: 10.1073/pnas.66.3.738

Subunit Structure of Human Fibrinogen, Soluble Fibrin, and Cross-Linked Insoluble Fibrin*

Patrick A McKee 1,2, Patrick Mattock 1,2, Robert L Hill 1,2,
PMCID: PMC283112  PMID: 5269236

Abstract

The three unique polypeptide chains of human fibrinogen differ significantly in molecular weight. Cross-linkage of fibrin by fibrin-stabilizing factor results in the rapid formation of cross-links between γ-chains and a slower formation of cross-links between α-chains. β-Chains are not involved directly in the cross-linking of fibrin. Reduced, cross-linked fibrin contains uncross-linked β-chains, dimers of γ-chain, and higher polymers of α-chain. Although it is uncertain whether the γ-γ dimers are formed by chains in different molecules of fibrin, the polymers of α-chain in fibrin can only be accounted for by cross-linkage of α-chains in different molecules. The nature of cross-linkage among the subunits in fibrin can account well for the three-dimensional, covalent structure of cross-linked, insoluble fibrin.

Full text

PDF
744

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Dunker A. K., Rueckert R. R. Observations on molecular weight determinations on polyacrylamide gel. J Biol Chem. 1969 Sep 25;244(18):5074–5080. [PubMed] [Google Scholar]
  2. Johnson P., Mihalyi E. Physicochemical studies of bovine fibrinogen. I. Molecular weight and hydrodynamic properties of fibrinogen and fibrinogen cleaved by sulfite in 5 M guanidine-HC-l solution. Biochim Biophys Acta. 1965 Jul 22;102(2):467–475. doi: 10.1016/0926-6585(65)90137-8. [DOI] [PubMed] [Google Scholar]
  3. Lorand L., Chenoweth D., Domanik R. A. Chain pairs in the crosslinking of fibrin. Biochem Biophys Res Commun. 1969 Oct 8;37(2):219–224. doi: 10.1016/0006-291x(69)90722-0. [DOI] [PubMed] [Google Scholar]
  4. Lorand L., Chenoweth D. Intramolecular localization of the acceptor cross-linking sites in fibrin. Proc Natl Acad Sci U S A. 1969 Aug;63(4):1247–1252. doi: 10.1073/pnas.63.4.1247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. McKee P. A., Rogers L. A., Marler E., Hill R. L. The subunit polypeptides of human fibrinogen. Arch Biochem Biophys. 1966 Sep 26;116(1):271–279. doi: 10.1016/0003-9861(66)90033-6. [DOI] [PubMed] [Google Scholar]
  6. Mills D. A., Triantaphyllopoulos D. C. Distribution of carbohydrate among the polypeptide chains and plasmin digest products of human fibrinogen. Arch Biochem Biophys. 1969 Dec;135(1):28–35. doi: 10.1016/0003-9861(69)90512-8. [DOI] [PubMed] [Google Scholar]
  7. Takagi T., Iwanaga S. Polypeptide chain involved in the cross-linking of stabilized bovine fibrin. Biochem Biophys Res Commun. 1970 Jan 6;38(1):129–136. doi: 10.1016/0006-291x(70)91094-6. [DOI] [PubMed] [Google Scholar]
  8. Waugh D. F., Livingstone B. J. Clotting Time and Reaction Velocity in the Interaction of Bovine Fibrinogen and Thrombin. Science. 1951 Feb 2;113(2927):121–124. doi: 10.1126/science.113.2927.121. [DOI] [PubMed] [Google Scholar]
  9. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES