Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1970 Jul;66(3):995–1001. doi: 10.1073/pnas.66.3.995

Glucocorticoid Regulation of ACTH Sensitivity of Adenyl Cyclase in Rat Fat Cell Membranes

T Braun 1,*, O Hechter 1
PMCID: PMC283149  PMID: 4316684

Abstract

Plasma membrane sacs of isolated rat fat cells (ghots) possess an adenyl cyclase system, which is activated by lipolytic hormones of disparate molecular structure, including adrenocorticotropin (ACTH), glucagon, and epinephrine. Previous studies indicated that distinctive selectivity units for individual hormones are coupled to the same unit of adenyl cyclase in the fat cell membrane. The present study has shown that ghost cyclase from adrenalectomized and hypophysectomized rats exhibits a striking reduction in response to ACTH, the stimulatory effects of epinephrine, glucagon, or fluoride being unchanged. Pretreatment of adrenalectomized, hypophysectomized, sham operated, or intact rats with the synthetic glucocorticoid, dexamethasone, selectively increased the ACTH response in ghost cyclase preparations. Cortisol, like dexamethasone, increased the ACTH response in ghosts from adrenalectomized rats; 11-deoxycorticosterone was ineffective. The dexamethasone effect to enhance the ACTH response is blocked by actinomycin D or cycloheximide.

The present results show that stimulation of rat fat cell adenyl cyclase by ACTH involves a distinctive molecular entity, which can be clearly differentiated from adenyl cyclase in the membrane as well as from the selectivity sites for epinephrine and glucagon. The data indicate that the biosynthesis of the component required for ACTH stimulation of ghost cyclase—either an ACTH selectivity unit or specific coupling factor—is induced by glucocorticoids at the level of gene regulation.

Full text

PDF
999

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birnbaumer L., Pohl S. L., Rodbell M. Adenyl cyclase in fat cells. 1. Properties and the effects of adrenocorticotropin and fluoride. J Biol Chem. 1969 Jul 10;244(13):3468–3476. [PubMed] [Google Scholar]
  2. Birnbaumer L., Rodbell M. Adenyl cyclase in fat cells. II. Hormone receptors. J Biol Chem. 1969 Jul 10;244(13):3477–3482. [PubMed] [Google Scholar]
  3. Butcher R. W., Robison G. A., Hardman J. G., Sutherland E. W. The role of cyclic AMP in hormone actions. Adv Enzyme Regul. 1968;6:357–389. doi: 10.1016/0065-2571(68)90023-x. [DOI] [PubMed] [Google Scholar]
  4. Bär H. P., Hechter O. Adenyl cyclase and hormone action. I. Effects of adrenocorticotropic hormone, glucagon, and epinephrine on the plasma membrane of rat fat cells. Proc Natl Acad Sci U S A. 1969 Jun;63(2):350–356. doi: 10.1073/pnas.63.2.350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bär H. P., Hechter O. Adenyl cyclase assay in fat cell ghosts. Anal Biochem. 1969 Jun;29(3):476–489. doi: 10.1016/0003-2697(69)90332-7. [DOI] [PubMed] [Google Scholar]
  6. Hechter O., Bär H. P., Matsuba M., Soifer D. ACTH sensitive adenyl cyclase in bovine adrenal cortex membrane fractions. Life Sci. 1969 Sep 1;8(17):935–942. doi: 10.1016/0024-3205(69)90422-6. [DOI] [PubMed] [Google Scholar]
  7. Oye I., Sutherland E. W. The effect of epinephrine and other agents on adenyl cyclase in the cell membrane of avian erythrocytes. Biochim Biophys Acta. 1966 Oct 31;127(2):347–354. doi: 10.1016/0304-4165(66)90389-8. [DOI] [PubMed] [Google Scholar]
  8. Pastan I., Katzen R. Activation of adenyl cyclase in thyroid homogenates by thyroid-stimulating hormone. Biochem Biophys Res Commun. 1967 Dec 29;29(6):792–798. doi: 10.1016/0006-291x(67)90289-6. [DOI] [PubMed] [Google Scholar]
  9. REICH E., FRANKLIN R. M., SHATKIN A. J., TATUM E. L. Effect of actinomycin D on cellular nucleic acid synthesis and virus production. Science. 1961 Aug 25;134(3478):556–557. doi: 10.1126/science.134.3478.556. [DOI] [PubMed] [Google Scholar]
  10. RODBELL M. METABOLISM OF ISOLATED FAT CELLS. I. EFFECTS OF HORMONES ON GLUCOSE METABOLISM AND LIPOLYSIS. J Biol Chem. 1964 Feb;239:375–380. [PubMed] [Google Scholar]
  11. Rodbell M., Birnbaumer L., Pohl S. L. Adenyl cyclase in fat cells. 3. Stimulation by secretin and the effects of trypsin on the receptors for lipolytic hormones. J Biol Chem. 1970 Feb 25;245(4):718–722. [PubMed] [Google Scholar]
  12. SAVARD K., MARSH J. M., RICE B. F. GONADOTROPINS AND OVARIAN STEROIDOGENESIS. Recent Prog Horm Res. 1965;21:285–365. [PubMed] [Google Scholar]
  13. SCHIMKE R. T., SWEENEY E. W., BERLIN C. M. THE ROLES OF SYNTHESIS AND DEGRADATION IN THE CONTROL OF RAT LIVER TRYPTOPHAN PYRROLASE. J Biol Chem. 1965 Jan;240:322–331. [PubMed] [Google Scholar]
  14. SIEGEL M. R., SISLER H. D. SITE OF ACTION OF CYCLOHEXIMIDE IN CELLS OF SACCHAROMYCES PASTORIANUS. I. EFFECT OF THE ANTIBIOTIC ON CELLULAR METABOLISM. Biochim Biophys Acta. 1964 May 18;87:70–82. doi: 10.1016/0926-6550(64)90048-9. [DOI] [PubMed] [Google Scholar]
  15. Taunton O. D., Roth J., Pastan I. Studies on the adrenocorticotropic hormone-activated adenyl cyclase of a functional adrenal tumor. J Biol Chem. 1969 Jan 25;244(2):247–253. [PubMed] [Google Scholar]
  16. Vaughan M., Murad F. Adenyl cyclase activity in particles from fat cells. Biochemistry. 1969 Jul;8(7):3092–3099. doi: 10.1021/bi00835a060. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES