Abstract
RNA which dissociated from purified cerebral polyribosomes of adult rats in the presence of EDTA was isolated by fractionation in a discontinuous sucrose gradient. The yield was 2% of the total polyribosomal RNA. The base composition resembled the complementary values for rat DNA and was very different from base compositions of ribosomal RNA and transfer RNA. This RNA fraction contained a large proportion of molecules which were rapidly labeled in vivo and hybridized to homologous DNA. The polyribosomal RNA preparation also exhibited high template activity in a cerebral cell-free system which had previously been stripped of the capacity to incorporate amino acids in the absence of added messenger RNA (mRNA). Sedimentation analysis revealed only two peaks, with coefficients of approximately 8 S and 16 S. The data indicate that RNA with the properties of mRNA can be selectively isolated from cerebral polyribosomes under mild conditions which avoid degradation.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- BOLTON E. T., MCCARTHY B. J. FRACTIONATION OF COMPLEMENTARY RNA. J Mol Biol. 1964 Feb;8:201–209. doi: 10.1016/s0022-2836(64)80129-7. [DOI] [PubMed] [Google Scholar]
- Bondy S. C., Roberts S. Hybridizable ribonucleic acid of rat brain. Biochem J. 1968 Oct;109(4):533–541. doi: 10.1042/bj1090533. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bondy S. C., Roberts S. Messenger ribonucleic acid of cerebral nuclei. Biochem J. 1967 Dec;105(3):1111–1118. doi: 10.1042/bj1051111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Egyházi E., Hydén H. Biosynthesis of rapidly labeled RNA in brain cells. Life Sci. 1966 Jul;5(13):1215–1223. doi: 10.1016/0024-3205(66)90043-9. [DOI] [PubMed] [Google Scholar]
- Fuhr J. E., London I. M., Grayzel A. I. A factor promoting the initiation of globin synthesis in a rabbit reticulocyte cell-free system. Proc Natl Acad Sci U S A. 1969 May;63(1):129–134. doi: 10.1073/pnas.63.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ghosh H. P., Söll D., Khorana H. G. Studies on polynucleotides. LXVII. Initiation of protein synthesis in vitro as studied by using ribopolynucleotides with repeating nucleotide sequences as messengers. J Mol Biol. 1967 Apr 28;25(2):275–298. doi: 10.1016/0022-2836(67)90142-8. [DOI] [PubMed] [Google Scholar]
- Hadjiolov A. A. Studies on the turnover and messenger activity of rat-liver ribonucleic acids. Biochim Biophys Acta. 1966 Jun 22;119(3):547–556. doi: 10.1016/0005-2787(66)90131-6. [DOI] [PubMed] [Google Scholar]
- Henshaw E. C., Revel M., Hiatt H. H. A cytoplasmic particle bearing messenger ribonucleic acid in rat liver. J Mol Biol. 1965 Nov;14(1):241–256. doi: 10.1016/s0022-2836(65)80244-3. [DOI] [PubMed] [Google Scholar]
- Herriman I. D., Hunter G. D. Cytoplasmic protein synthesis in mouse brain. J Neurochem. 1965 Nov;12(11):937–947. doi: 10.1111/j.1471-4159.1965.tb11937.x. [DOI] [PubMed] [Google Scholar]
- Hunt J. A., Laycock D. G. Characterization of messenger RNA for hemoglobin. Cold Spring Harb Symp Quant Biol. 1969;34:579–584. doi: 10.1101/sqb.1969.034.01.065. [DOI] [PubMed] [Google Scholar]
- Hydén H., Lange P. W. A differentiation in RNA response in neurons early and late during learning. Proc Natl Acad Sci U S A. 1965 May;53(5):946–952. doi: 10.1073/pnas.53.5.946. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iwasaki K., Sabol S., Wahba A. J., Ochoa S. Translation of the genetic message. VII. Role of initiation factors in formation of the chain initiation complex with Escherichia coli ribosomes. Arch Biochem Biophys. 1968 May;125(2):542–547. doi: 10.1016/0003-9861(68)90612-7. [DOI] [PubMed] [Google Scholar]
- Jacob M., Stevenin J., Jund R., Judes C., Mandel P. Rapidly-labelled ribonucleic acids in brain. J Neurochem. 1966 Aug;13(8):619–628. doi: 10.1111/j.1471-4159.1966.tb09870.x. [DOI] [PubMed] [Google Scholar]
- KATZ S., COMB D. G. A NEW METHOD FOR THE DETERMINATION OF THE BASE COMPOSITION OF RIBONUCLEIC ACID. J Biol Chem. 1963 Sep;238:3065–3067. [PubMed] [Google Scholar]
- KRUH J., DREYFUS J. C., SCHAPIRA G. ACTIVATION DE LA SYNTH'ESE ACELLULAIRE DE L'H'EMOGLOBINE PAR L'ACIDE RIBONUCL'EIQUE. 3. ACTION DE L'ACIDE RIBONUCL'EIQUE TOTAL DE FOIE. Biochim Biophys Acta. 1964 Nov 15;91:494–505. [PubMed] [Google Scholar]
- Kimberlin R. H. RNA synthesis in mouse brain. J Neurochem. 1967 Jan;14(1):123–134. doi: 10.1111/j.1471-4159.1967.tb09501.x. [DOI] [PubMed] [Google Scholar]
- Kuff E. L., Hymer W. C. Pulse-labeling patterns of microsomal ribonucleic acid extracted with lauryltrimethylammonium chloride. Biochemistry. 1966 Mar;5(3):959–970. doi: 10.1021/bi00867a023. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Labrie F. Isolation of an RNA with the properties of haemoglobin messenger. Nature. 1969 Mar 29;221(5187):1217–1222. doi: 10.1038/2211217a0. [DOI] [PubMed] [Google Scholar]
- Lanyon W. G., Paul J., Williamson R. The fractionation of ribonucleic acid on a preparative scale by polyacrylamide gel electrophoresis. FEBS Lett. 1968 Oct;1(5):279–282. doi: 10.1016/0014-5793(68)80131-0. [DOI] [PubMed] [Google Scholar]
- Laycock D. G., Hunt J. A. Synthesis of rabbit globin by a bacterial cell free system. Nature. 1969 Mar 22;221(5186):1118–1122. doi: 10.1038/2211118a0. [DOI] [PubMed] [Google Scholar]
- MATTHAEI J. H., NIRENBERG M. W. Characteristics and stabilization of DNAase-sensitive protein synthesis in E. coli extracts. Proc Natl Acad Sci U S A. 1961 Oct 15;47:1580–1588. doi: 10.1073/pnas.47.10.1580. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MAXWELL E. S. Stimulation of amino acid incorporation into protein by natural and synthetic polyribonucleotides in a mammalian cell-free system. Proc Natl Acad Sci U S A. 1962 Sep 15;48:1639–1643. doi: 10.1073/pnas.48.9.1639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mahler H. R., Moore W. J., Thompson R. J. Isolation and characterization of ribonucleic acid from cerebral cortex of rat. J Biol Chem. 1966 Mar 25;241(6):1283–1289. [PubMed] [Google Scholar]
- Miller R. L., Schweet R. Isolation of a protein fraction from reticulocyte ribosomes required for de novo synthesis of hemoglobin. Arch Biochem Biophys. 1968 May;125(2):632–646. doi: 10.1016/0003-9861(68)90622-x. [DOI] [PubMed] [Google Scholar]
- Revel M., Lelong J. C., Brawerman G., Gros F. Function of three protein factors and ribosomal subunits in the initiation of protein synthesis in E. coli. Nature. 1968 Sep 7;219(5158):1016–1021. doi: 10.1038/2191016a0. [DOI] [PubMed] [Google Scholar]
- SHAEFFER J., FAVELUKES G., SCHWEET R. STIMULATION OF AMINO ACID INCORPORATION IN AN ESCHERICHIA COLI CELL-FREE SYSTEM BY RETICULOCYTE RNA. Biochim Biophys Acta. 1964 Feb 17;80:247–255. doi: 10.1016/0926-6550(64)90097-0. [DOI] [PubMed] [Google Scholar]
- Samli M. H., Roberts S. Properties of RNA fractions from nuclei of brain cells which stimulate incorporation of amino acids by brain ribosomes. J Neurochem. 1969 Dec;16(12):1565–1580. doi: 10.1111/j.1471-4159.1969.tb10355.x. [DOI] [PubMed] [Google Scholar]
- Schneider D., Roberts S. Base compositons of 18 S and 28 S RNA fractions from rat cerebral ribosomes. J Neurochem. 1968 Dec;15(12):1469–1471. doi: 10.1111/j.1471-4159.1968.tb05929.x. [DOI] [PubMed] [Google Scholar]
- Shashoua V. E. RNA changes in goldfish brain during learning. Nature. 1968 Jan 20;217(5125):238–240. doi: 10.1038/217238a0. [DOI] [PubMed] [Google Scholar]
- Shashoua V. E. RNA metabolism in goldfish brain during acquisition of new behavioral patterns. Proc Natl Acad Sci U S A. 1970 Jan;65(1):160–167. doi: 10.1073/pnas.65.1.160. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stevenin J., Samec J., Jacob M., Mandel P. Détermination de la fraction du génome codant pour les RNA ribosomiques et messagers dans le cerveau du rat adulte. J Mol Biol. 1968 May 14;33(3):777–793. doi: 10.1016/0022-2836(68)90319-7. [DOI] [PubMed] [Google Scholar]
- Tsanev R. G., Markov G. G., Dessev G. N. Incorporation of labelled precursors into the electrophoretic fractions of rat-liver ribonucleic acid. Biochem J. 1966 Jul;100(1):204–210. doi: 10.1042/bj1000204. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vesco C., Giuditta A. Pattern of RNA synthesis in rabbit brain. Biochim Biophys Acta. 1967 Jul 18;142(2):385–402. doi: 10.1016/0005-2787(67)90620-x. [DOI] [PubMed] [Google Scholar]
- WEBB J. M. A sensitive method for the determination of ribonucleic acid in tissues and microorganisms. J Biol Chem. 1956 Aug;221(2):635–649. [PubMed] [Google Scholar]
- WYATT G. R. The purine and pyrimidine composition of deoxypentose nucleic acids. Biochem J. 1951 May;48(5):584–590. doi: 10.1042/bj0480584. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamagami S., Fritz R. R., Rappoport D. A. Biochemistry of the developing rat brain. 8. Changes in the ribosomal system and nuclear RNA's. Biochim Biophys Acta. 1966 Dec 21;129(3):532–547. [PubMed] [Google Scholar]
- ZOMZELY C. E., ROBERTS S., RAPAPORT D. REGULATION OF CEREBRAL METABOLISM OF AMINO ACIDS-3. CHARACTERISTICS OF AMINO ACID INCORPORATION INTO PROTEIN OF MICROSOMAL AND RIBOSOMAL PREPARATIONS OF RAT CEREBRAL CORTEX. J Neurochem. 1964 Aug;11:567–582. doi: 10.1111/j.1471-4159.1964.tb11454.x. [DOI] [PubMed] [Google Scholar]
- Zomzely C. E., Roberts S., Brown D. M., Provost C. Cerebral protein synthesis. I. Physical properties of cerebral ribosomes and polyribosomes. J Mol Biol. 1966 Aug;19(2):455–468. doi: 10.1016/s0022-2836(66)80016-5. [DOI] [PubMed] [Google Scholar]
- Zomzely C. E., Roberts S., Gruber C. P., Brown D. M. Cerebral protein synthesis. II. Instability of cerebral messenger ribonucleic acid-ribosome complexes. J Biol Chem. 1968 Oct 25;243(20):5396–5409. [PubMed] [Google Scholar]