Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1992 Nov;36(11):2569–2572. doi: 10.1128/aac.36.11.2569

Molecular basis of the efficacy of cefaclor against Haemophilus influenzae.

M Picard 1, F Malouin 1
PMCID: PMC284379  PMID: 1489208

Abstract

Cefaclor sustained its inhibitory activity against a beta-lactamase-producing strain of Haemophilus influenzae. Although a relatively high permeability coefficient was calculated for ampicillin compared with that calculated for cefaclor, the resulting periplasmic concentration of cefaclor was 5.7 times that of ampicillin. The efficacy of cefaclor may be due to its higher beta-lactamase resistance, which allows it to achieve a greater periplasmic concentration and adequate binding to crucial penicillin-binding proteins.

Full text

PDF
2572

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. American Academy of Pediatrics Committee on Infectious Diseases: Treatment of bacterial meningitis. Pediatrics. 1988 Jun;81(6):904–907. [PubMed] [Google Scholar]
  2. Bellido F., Pechère J. C., Hancock R. E. Novel method for measurement of outer membrane permeability to new beta-lactams in intact Enterobacter cloacae cells. Antimicrob Agents Chemother. 1991 Jan;35(1):68–72. doi: 10.1128/aac.35.1.68. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bellido F., Pechère J. C., Hancock R. E. Reevaluation of the factors involved in the efficacy of new beta-lactams against Enterobacter cloacae. Antimicrob Agents Chemother. 1991 Jan;35(1):73–78. doi: 10.1128/aac.35.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Campos J., García-Tornel S., Gairí J. M., Fábregues I. Multiply resistant Haemophilus influenzae type b causing meningitis: comparative clinical and laboratory study. J Pediatr. 1986 Jun;108(6):897–902. doi: 10.1016/s0022-3476(86)80923-4. [DOI] [PubMed] [Google Scholar]
  5. Cao C., Chin N. X., Neu H. C. In-vitro activity and beta-lactamase stability of LY163892. J Antimicrob Chemother. 1988 Aug;22(2):155–165. doi: 10.1093/jac/22.2.155. [DOI] [PubMed] [Google Scholar]
  6. Clairoux N., Picard M., Brochu A., Rousseau N., Gourde P., Beauchamp D., Parr T. R., Jr, Bergeron M. G., Malouin F. Molecular basis of the non-beta-lactamase-mediated resistance to beta-lactam antibiotics in strains of Haemophilus influenzae isolated in Canada. Antimicrob Agents Chemother. 1992 Jul;36(7):1504–1513. doi: 10.1128/aac.36.7.1504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cochi S. L., Fleming D. W., Hightower A. W., Limpakarnjanarat K., Facklam R. R., Smith J. D., Sikes R. K., Broome C. V. Primary invasive Haemophilus influenzae type b disease: a population-based assessment of risk factors. J Pediatr. 1986 Jun;108(6):887–896. doi: 10.1016/s0022-3476(86)80922-2. [DOI] [PubMed] [Google Scholar]
  8. Coulton J. W., Mason P., Dorrance D. The permeability barrier of Haemophilus influenzae type b against beta-lactam antibiotics. J Antimicrob Chemother. 1983 Nov;12(5):435–449. doi: 10.1093/jac/12.5.435. [DOI] [PubMed] [Google Scholar]
  9. Doern G. V., Jorgensen J. H., Thornsberry C., Preston D. A., Tubert T., Redding J. S., Maher L. A. National collaborative study of the prevalence of antimicrobial resistance among clinical isolates of Haemophilus influenzae. Antimicrob Agents Chemother. 1988 Feb;32(2):180–185. doi: 10.1128/aac.32.2.180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Doern G. V., Vautour R., Parker D., Tubert T., Torres B. In vitro activity of loracarbef (LY163892), a new oral carbacephem antimicrobial agent, against respiratory isolates of Haemophilus influenzae and Moraxella catarrhalis. Antimicrob Agents Chemother. 1991 Jul;35(7):1504–1507. doi: 10.1128/aac.35.7.1504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Johnsson J., Brorson J. E. Influence of beta-lactamase-producing strains of Branhamella catarrhalis and Haemophilus influenzae on certain beta-lactam antibiotics. J Antimicrob Chemother. 1983 Sep;12(3):269–271. doi: 10.1093/jac/12.3.269. [DOI] [PubMed] [Google Scholar]
  12. Jones R. N., Barry A. L. Antimicrobial activity, spectrum, and recommendations for disk diffusion susceptibility testing of ceftibuten (7432-S; SCH 39720), a new orally administered cephalosporin. Antimicrob Agents Chemother. 1988 Oct;32(10):1576–1582. doi: 10.1128/aac.32.10.1576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jorgensen J. H., Doern G. V., Maher L. A., Howell A. W., Redding J. S. Antimicrobial resistance among respiratory isolates of Haemophilus influenzae, Moraxella catarrhalis, and Streptococcus pneumoniae in the United States. Antimicrob Agents Chemother. 1990 Nov;34(11):2075–2080. doi: 10.1128/aac.34.11.2075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jorgensen J. H., Redding J. S., Maher L. A. Influence of storage and susceptibility test conditions on stability and activity of LY163892 and four other cephalosporins. Antimicrob Agents Chemother. 1988 Oct;32(10):1477–1480. doi: 10.1128/aac.32.10.1477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Knapp C. C., Washington J. A., 2nd In vitro activities of LY163892, cefaclor, and cefuroxime. Antimicrob Agents Chemother. 1988 Jan;32(1):131–133. doi: 10.1128/aac.32.1.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Laemmli U. K., Favre M. Maturation of the head of bacteriophage T4. I. DNA packaging events. J Mol Biol. 1973 Nov 15;80(4):575–599. doi: 10.1016/0022-2836(73)90198-8. [DOI] [PubMed] [Google Scholar]
  17. Malouin F., Bryan L. E. Haemophilus influenzae penicillin-binding proteins 1a and 3 possess distinct and opposite temperature-modulated penicillin-binding activities. Antimicrob Agents Chemother. 1988 Apr;32(4):498–502. doi: 10.1128/aac.32.4.498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Malouin F., Bryan L. E. Modification of penicillin-binding proteins as mechanisms of beta-lactam resistance. Antimicrob Agents Chemother. 1986 Jul;30(1):1–5. doi: 10.1128/aac.30.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Malouin F., Parr T. R., Jr, Bryan L. E. Identification of a group of Haemophilus influenzae penicillin-binding proteins that may have complementary physiological roles. Antimicrob Agents Chemother. 1990 Feb;34(2):363–365. doi: 10.1128/aac.34.2.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mendelman P. M., Chaffin D. O., Stull T. L., Rubens C. E., Mack K. D., Smith A. L. Characterization of non-beta-lactamase-mediated ampicillin resistance in Haemophilus influenzae. Antimicrob Agents Chemother. 1984 Aug;26(2):235–244. doi: 10.1128/aac.26.2.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Needham C. A. Haemophilus influenzae: antibiotic susceptibility. Clin Microbiol Rev. 1988 Apr;1(2):218–227. doi: 10.1128/cmr.1.2.218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Neu H. C., Fu K. P. Cefaclor: in vitro spectrum of activity and beta-lactamase stability. Antimicrob Agents Chemother. 1978 Apr;13(4):584–588. doi: 10.1128/aac.13.4.584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nikaido H., Rosenberg E. Y., Foulds J. Porin channels in Escherichia coli: studies with beta-lactams in intact cells. J Bacteriol. 1983 Jan;153(1):232–240. doi: 10.1128/jb.153.1.232-240.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Parr T. R., Jr, Bryan L. E. Mechanism of resistance of an ampicillin-resistant, beta-lactamase-negative clinical isolate of Haemophilus influenzae type b to beta-lactam antibiotics. Antimicrob Agents Chemother. 1984 Jun;25(6):747–753. doi: 10.1128/aac.25.6.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Preston D. A., Wu C. Y., Blaszczak L. C., Seitz D. E., Halligan N. G. Biological characterization of a new radioactive labeling reagent for bacterial penicillin-binding proteins. Antimicrob Agents Chemother. 1990 May;34(5):718–721. doi: 10.1128/aac.34.5.718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Serfass D. A., Mendelman P. M., Chaffin D. O., Needham C. A. Ampicillin resistance and penicillin-binding proteins of Haemophilus influenzae. J Gen Microbiol. 1986 Oct;132(10):2855–2861. doi: 10.1099/00221287-132-10-2855. [DOI] [PubMed] [Google Scholar]
  27. Spratt B. G. Properties of the penicillin-binding proteins of Escherichia coli K12,. Eur J Biochem. 1977 Jan;72(2):341–352. doi: 10.1111/j.1432-1033.1977.tb11258.x. [DOI] [PubMed] [Google Scholar]
  28. Tremblay L. D., L'Ecuyer J., Provencher P., Bergeron M. G. Susceptibility of Haemophilus influenzae to antimicrobial agents used in Canada. Canadian Study Group. CMAJ. 1990 Nov 1;143(9):895–901. [PMC free article] [PubMed] [Google Scholar]
  29. Tuomanen E., Gilbert K., Tomasz A. Modulation of bacteriolysis by cooperative effects of penicillin-binding proteins 1a and 3 in Escherichia coli. Antimicrob Agents Chemother. 1986 Nov;30(5):659–663. doi: 10.1128/aac.30.5.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Vachon V., Lyew D. J., Coulton J. W. Transmembrane permeability channels across the outer membrane of Haemophilus influenzae type b. J Bacteriol. 1985 Jun;162(3):918–924. doi: 10.1128/jb.162.3.918-924.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Zimmermann W., Rosselet A. Function of the outer membrane of Escherichia coli as a permeability barrier to beta-lactam antibiotics. Antimicrob Agents Chemother. 1977 Sep;12(3):368–372. doi: 10.1128/aac.12.3.368. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES