Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agacfidan A., Moncada J., Schachter J. In vitro activity of azithromycin (CP-62,993) against Chlamydia trachomatis and Chlamydia pneumoniae. Antimicrob Agents Chemother. 1993 Sep;37(9):1746–1748. doi: 10.1128/aac.37.9.1746. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anderson G., Esmonde T. S., Coles S., Macklin J., Carnegie C. A comparative safety and efficacy study of clarithromycin and erythromycin stearate in community-acquired pneumonia. J Antimicrob Chemother. 1991 Feb;27 (Suppl A):117–124. doi: 10.1093/jac/27.suppl_a.117. [DOI] [PubMed] [Google Scholar]
- Chien S. M., Pichotta P., Siepman N., Chan C. K. Treatment of community-acquired pneumonia. A multicenter, double-blind, randomized study comparing clarithromycin with erythromycin. Canada-Sweden Clarithromycin-Pneumonia Study Group. Chest. 1993 Mar;103(3):697–701. doi: 10.1378/chest.103.3.697. [DOI] [PubMed] [Google Scholar]
- Chirgwin K., Roblin P. M., Gelling M., Hammerschlag M. R., Schachter J. Infection with Chlamydia pneumoniae in Brooklyn. J Infect Dis. 1991 Apr;163(4):757–761. doi: 10.1093/infdis/163.4.757. [DOI] [PubMed] [Google Scholar]
- Chirgwin K., Roblin P. M., Hammerschlag M. R. In vitro susceptibilities of Chlamydia pneumoniae (Chlamydia sp. strain TWAR). Antimicrob Agents Chemother. 1989 Sep;33(9):1634–1635. doi: 10.1128/aac.33.9.1634. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chow A. W., Hall C. B., Klein J. O., Kammer R. B., Meyer R. D., Remington J. S. Evaluation of new anti-infective drugs for the treatment of respiratory tract infections. Infectious Diseases Society of America and the Food and Drug Administration. Clin Infect Dis. 1992 Nov;15 (Suppl 1):S62–S88. doi: 10.1093/clind/15.Supplement_1.S62. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cles L. D., Stamm W. E. Use of HL cells for improved isolation and passage of Chlamydia pneumoniae. J Clin Microbiol. 1990 May;28(5):938–940. doi: 10.1128/jcm.28.5.938-940.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooper M. A., Baldwin D., Matthews R. S., Andrews J. M., Wise R. In-vitro susceptibility of Chlamydia pneumoniae (TWAR) to seven antibiotics. J Antimicrob Chemother. 1991 Sep;28(3):407–413. doi: 10.1093/jac/28.3.407. [DOI] [PubMed] [Google Scholar]
- Ehret J. M., Judson F. N. Susceptibility testing of Chlamydia trachomatis: from eggs to monoclonal antibodies. Antimicrob Agents Chemother. 1988 Sep;32(9):1295–1299. doi: 10.1128/aac.32.9.1295. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Emre U., Roblin P. M., Gelling M., Dumornay W., Rao M., Hammerschlag M. R., Schachter J. The association of Chlamydia pneumoniae infection and reactive airway disease in children. Arch Pediatr Adolesc Med. 1994 Jul;148(7):727–732. doi: 10.1001/archpedi.1994.02170070065013. [DOI] [PubMed] [Google Scholar]
- Fenelon L. E., Mumtaz G., Ridgway G. L. The in-vitro antibiotic susceptibility of Chlamydia pneumoniae. J Antimicrob Chemother. 1990 Dec;26(6):763–767. doi: 10.1093/jac/26.6.763. [DOI] [PubMed] [Google Scholar]
- Grayston J. T., Aldous M. B., Easton A., Wang S. P., Kuo C. C., Campbell L. A., Altman J. Evidence that Chlamydia pneumoniae causes pneumonia and bronchitis. J Infect Dis. 1993 Nov;168(5):1231–1235. doi: 10.1093/infdis/168.5.1231. [DOI] [PubMed] [Google Scholar]
- Grayston J. T., Campbell L. A., Kuo C. C., Mordhorst C. H., Saikku P., Thom D. H., Wang S. P. A new respiratory tract pathogen: Chlamydia pneumoniae strain TWAR. J Infect Dis. 1990 Apr;161(4):618–625. doi: 10.1093/infdis/161.4.618. [DOI] [PubMed] [Google Scholar]
- Grayston J. T., Kuo C. C., Wang S. P., Altman J. A new Chlamydia psittaci strain, TWAR, isolated in acute respiratory tract infections. N Engl J Med. 1986 Jul 17;315(3):161–168. doi: 10.1056/NEJM198607173150305. [DOI] [PubMed] [Google Scholar]
- Hammerschlag M. R., Chirgwin K., Roblin P. M., Gelling M., Dumornay W., Mandel L., Smith P., Schachter J. Persistent infection with Chlamydia pneumoniae following acute respiratory illness. Clin Infect Dis. 1992 Jan;14(1):178–182. doi: 10.1093/clinids/14.1.178. [DOI] [PubMed] [Google Scholar]
- Hammerschlag M. R., Hyman C. L., Roblin P. M. In vitro activities of five quinolones against Chlamydia pneumoniae. Antimicrob Agents Chemother. 1992 Mar;36(3):682–683. doi: 10.1128/aac.36.3.682. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hammerschlag M. R., Qumei K. K., Roblin P. M. In vitro activities of azithromycin, clarithromycin, L-ofloxacin, and other antibiotics against Chlamydia pneumoniae. Antimicrob Agents Chemother. 1992 Jul;36(7):1573–1574. doi: 10.1128/aac.36.7.1573. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hyman C. L., Augenbraun M. H., Roblin P. M., Schachter J., Hammerschlag M. R. Asymptomatic respiratory tract infection with Chlamydia pneumoniae TWAR. J Clin Microbiol. 1991 Sep;29(9):2082–2083. doi: 10.1128/jcm.29.9.2082-2083.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones R. B., Van der Pol B., Martin D. H., Shepard M. K. Partial characterization of Chlamydia trachomatis isolates resistant to multiple antibiotics. J Infect Dis. 1990 Dec;162(6):1309–1315. doi: 10.1093/infdis/162.6.1309. [DOI] [PubMed] [Google Scholar]
- Kern D. G., Neill M. A., Schachter J. A seroepidemiologic study of Chlamydia pneumoniae in Rhode Island. Evidence of serologic cross-reactivity. Chest. 1993 Jul;104(1):208–213. doi: 10.1378/chest.104.1.208. [DOI] [PubMed] [Google Scholar]
- Kimura M., Kishimoto T., Niki Y., Soejima R. In vitro and in vivo antichlamydial activities of newly developed quinolone antimicrobial agents. Antimicrob Agents Chemother. 1993 Apr;37(4):801–803. doi: 10.1128/aac.37.4.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuo C. C., Grayston J. T. Factors affecting viability and growth in HeLa 229 cells of Chlamydia sp. strain TWAR. J Clin Microbiol. 1988 May;26(5):812–815. doi: 10.1128/jcm.26.5.812-815.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuo C. C., Grayston J. T. In vitro drug susceptibility of Chlamydia sp. strain TWAR. Antimicrob Agents Chemother. 1988 Feb;32(2):257–258. doi: 10.1128/aac.32.2.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuo C. C., Shor A., Campbell L. A., Fukushi H., Patton D. L., Grayston J. T. Demonstration of Chlamydia pneumoniae in atherosclerotic lesions of coronary arteries. J Infect Dis. 1993 Apr;167(4):841–849. doi: 10.1093/infdis/167.4.841. [DOI] [PubMed] [Google Scholar]
- Lipsky B. A., Tack K. J., Kuo C. C., Wang S. P., Grayston J. T. Ofloxacin treatment of Chlamydia pneumoniae (strain TWAR) lower respiratory tract infections. Am J Med. 1990 Dec;89(6):722–724. doi: 10.1016/0002-9343(90)90212-v. [DOI] [PubMed] [Google Scholar]
- Mourad A., Sweet R. L., Sugg N., Schachter J. Relative resistance to erythromycin in Chlamydia trachomatis. Antimicrob Agents Chemother. 1980 Nov;18(5):696–698. doi: 10.1128/aac.18.5.696. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ogawa H., Hashiguchi K., Kazuyama Y. Recovery of Chlamydia pneumoniae, in six patients with otitis media with effusion. J Laryngol Otol. 1992 Jun;106(6):490–492. doi: 10.1017/s0022215100119954. [DOI] [PubMed] [Google Scholar]
- Roblin P. M., Dumornay W., Hammerschlag M. R. Use of HEp-2 cells for improved isolation and passage of Chlamydia pneumoniae. J Clin Microbiol. 1992 Aug;30(8):1968–1971. doi: 10.1128/jcm.30.8.1968-1971.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roblin P. M., Montalban G., Hammerschlag M. R. In vitro activities of OPC-17116, a new quinolone; ofloxacin; and sparfloxacin against Chlamydia pneumoniae. Antimicrob Agents Chemother. 1994 Jun;38(6):1402–1403. doi: 10.1128/aac.38.6.1402. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roblin P. M., Montalban G., Hammerschlag M. R. Susceptibilities to clarithromycin and erythromycin of isolates of Chlamydia pneumoniae from children with pneumonia. Antimicrob Agents Chemother. 1994 Jul;38(7):1588–1589. doi: 10.1128/aac.38.7.1588. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rodvold K. A., Piscitelli S. C. New oral macrolide and fluoroquinolone antibiotics: an overview of pharmacokinetics, interactions, and safety. Clin Infect Dis. 1993 Aug;17 (Suppl 1):S192–S199. doi: 10.1093/clinids/17.supplement_1.s192. [DOI] [PubMed] [Google Scholar]
- Schönwald S., Skerk V., Petricevic I., Car V., Majerus-Misic L., Gunjaca M. Comparison of three-day and five-day courses of azithromycin in the treatment of atypical pneumonia. Eur J Clin Microbiol Infect Dis. 1991 Oct;10(10):877–880. doi: 10.1007/BF01975847. [DOI] [PubMed] [Google Scholar]
- Theunissen H. J., Lemmens-den Toom N. A., Burggraaf A., Stolz E., Michel M. F. Influence of temperature and relative humidity on the survival of Chlamydia pneumoniae in aerosols. Appl Environ Microbiol. 1993 Aug;59(8):2589–2593. doi: 10.1128/aem.59.8.2589-2593.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thom D. H., Grayston J. T., Wang S. P., Kuo C. C., Altman J. Chlamydia pneumoniae strain TWAR, Mycoplasma pneumoniae, and viral infections in acute respiratory disease in a university student health clinic population. Am J Epidemiol. 1990 Aug;132(2):248–256. doi: 10.1093/oxfordjournals.aje.a115654. [DOI] [PubMed] [Google Scholar]
- Welsh L. E., Gaydos C. A., Quinn T. C. In vitro evaluation of activities of azithromycin, erythromycin, and tetracycline against Chlamydia trachomatis and Chlamydia pneumoniae. Antimicrob Agents Chemother. 1992 Feb;36(2):291–294. doi: 10.1128/aac.36.2.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wise R., Andrews J. M., Brenwald N. The in-vitro activity of OPC-17116, a new 5-methyl substituted quinolone. J Antimicrob Chemother. 1993 Apr;31(4):497–504. doi: 10.1093/jac/31.4.497. [DOI] [PubMed] [Google Scholar]