Abstract
Treatment with urea-mercaptoethanol of purified spores of Bacillus thuringiensis, other Bacillus species, and Clostridium roseum solubilizes a protein fraction between 5 and 12% of the dry weight of the spores. This fraction behaves identically to the crystal protein of B. thuringiensis on acrylamide-gel electrophoresis. The protein from all of the Bacillus species shows partial homology with crystal protein, using the Ouchterlony immunodiffusion technique. A further fraction, similar in amount, can be removed from spores of B. thuringiensis by the addition of sodium lauryl sulfate to the urea-mercaptoethanol. Spores of B. thuringiensis extracted in these ways show no difference when compared to untreated spores with respect to viability or resistance to heat and ultraviolet-irradiation. The extracted spores do show differences in their germination requirements and their susceptibility to phase-darkening by lysozyme. It is concluded that an urea-mercaptoethanol-soluble protein or class of protein is a widespread component of bacterial spores, possibly located in the spore coat, and that this protein may be related to the crystal protein of B. thuringiensis.
Full text
PDF![551](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8779/284940/6cca6ab43987/jbacter00581-0243.png)
![552](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8779/284940/6c2e6280944f/jbacter00581-0244.png)
![553](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8779/284940/abaadde2b19e/jbacter00581-0245.png)
![554](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8779/284940/4425d70e9ba7/jbacter00581-0246.png)
![555](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8779/284940/042520d9f2a2/jbacter00581-0247.png)
![556](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8779/284940/4a7e8198e670/jbacter00581-0248.png)
![557](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8779/284940/fd99d40694b5/jbacter00581-0249.png)
![558](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8779/284940/922f126ba6dc/jbacter00581-0250.png)
![559](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8779/284940/1e51395d580f/jbacter00581-0251.png)
![560](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8779/284940/133504a66921/jbacter00581-0252.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aronson A. I., Fitz-James P. C. Biosynthesis of bacterial spore coats. J Mol Biol. 1968 Apr 14;33(1):199–212. doi: 10.1016/0022-2836(68)90288-x. [DOI] [PubMed] [Google Scholar]
- BERGER J. A., MARR A. G. Sonic disruption of spores of Bacillus cereus. J Gen Microbiol. 1960 Feb;22:147–157. doi: 10.1099/00221287-22-1-147. [DOI] [PubMed] [Google Scholar]
- Delafield F. P., Somerville H. J., Rittenberg S. C. Immunological homology between crystal and spore protein of Bacillus thuringiensis. J Bacteriol. 1968 Sep;96(3):713–720. doi: 10.1128/jb.96.3.713-720.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GOULD G. W., HITCHINS A. D. SENSITIZATION OF BACTERIAL SPORES TO LYSOZYME AND TO HYDROGEN PEROXIDE WITH AGENTS WHICH RUPTURE DISULPHIDE BONDS. J Gen Microbiol. 1963 Dec;33:413–423. doi: 10.1099/00221287-33-3-413. [DOI] [PubMed] [Google Scholar]
- JANSSEN F. W., LUND A. J., ANDERSON L. E. Colorimetric assay for dipicolinic acid in bacterial spores. Science. 1958 Jan 3;127(3288):26–27. doi: 10.1126/science.127.3288.26. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- SACKS L. E., PERCELL P. B., THOMAS R. S., BAILEY G. F. KINETICS OF DRY RUPTURE OF BACTERIAL SPORES IN THE PRESENCE OF SALT. J Bacteriol. 1964 Apr;87:952–960. doi: 10.1128/jb.87.4.952-960.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Somerville H. J., Delafield F. P., Rittenberg S. C. Biochemical homology between crystal and spore protein of Bacillus thuringiensis. J Bacteriol. 1968 Sep;96(3):721–726. doi: 10.1128/jb.96.3.721-726.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]