Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1970 Nov;104(2):839–850. doi: 10.1128/jb.104.2.839-850.1970

Association of the Bacillus subtilis Chromosome with the Cell Membrane: Resolution of Free and Bound Deoxyribonucleic Acid on Renografin Gradients

Robert D Ivarie 1, Jacques J Pène 1
PMCID: PMC285067  PMID: 4992373

Abstract

Linear density gradients of Renografin have resolved two components of bacterial deoxyribonucleic acid (DNA) in sheared lysates. Component 1, at equilibrium density after 5 hr of centrifugation, is enriched for newly synthesized DNA and markers near the origin and terminus of replication. It contains 5% of total cellular protein, 25% of the phospholipids, 30 to 50% of the DNA, 4 to 11% of unstable ribonucleic acid (RNA), RNA polymerase, and low amounts of DNA polymerase. The material is sensitive to Pronase and Sarkosyl. In unsheared lysates, all of the DNA forms a band at this position. Shearing the lysate generates a slow-sedimenting fraction of DNA (component 2) which contains more uniformly labeled than newly synthesized DNA. These observations suggest that replicating DNA and DNA at the origin and possibly the terminus of replication are associated with membrane. The amount of uniformly labeled DNA in component 1 and an estimate of the number of chromosomal fragments suggest that other parts of the chromosome are possibly associated with the membrane.

Full text

PDF
841

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Botstein D., Levine M. Intermediates in the synthesis of phage P22 DNA. Cold Spring Harb Symp Quant Biol. 1968;33:659–667. doi: 10.1101/sqb.1968.033.01.075. [DOI] [PubMed] [Google Scholar]
  2. CAIRNS J. The bacterial chromosome and its manner of replication as seen by autoradiography. J Mol Biol. 1963 Mar;6:208–213. doi: 10.1016/s0022-2836(63)80070-4. [DOI] [PubMed] [Google Scholar]
  3. Cahn F. H., Fox M. S. Fractionation of transformable bacteria from ocompetent cultures of Bacillus subtilis on renografin gradients. J Bacteriol. 1968 Mar;95(3):867–875. doi: 10.1128/jb.95.3.867-875.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Coulian M. Initiation of the replication of single-stranded DNA by Escherichia coli DNA polymerase. Cold Spring Harb Symp Quant Biol. 1968;33:11–20. doi: 10.1101/sqb.1968.033.01.006. [DOI] [PubMed] [Google Scholar]
  5. Earhart C. F., Tremblay G. Y., Daniels M. J., Schaechter M. DNA replication studied by a new method for the isolation of cell membrane-DNA complexes. Cold Spring Harb Symp Quant Biol. 1968;33:707–710. doi: 10.1101/sqb.1968.033.01.079. [DOI] [PubMed] [Google Scholar]
  6. Hadden C., Nester E. W. Purification of competent cells in the Bacillus subtilis transformation system. J Bacteriol. 1968 Mar;95(3):876–885. doi: 10.1128/jb.95.3.876-885.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hallick L., Boyce R. P., Echols H. Membrane association by bacteriophage lambda-DNA: possible direct role of regulator gene N. Nature. 1969 Sep 20;223(5212):1239–1242. doi: 10.1038/2231239a0. [DOI] [PubMed] [Google Scholar]
  8. Knippers R., Sinsheimer R. L. Process of infection with bacteriophage phiX174. XX. Attachment of the parental DNA of bacteriophage phiX174 to a fast-sedimenting cell component. J Mol Biol. 1968 May 28;34(1):17–29. doi: 10.1016/0022-2836(68)90231-3. [DOI] [PubMed] [Google Scholar]
  9. Knippers R., Strätling W. The DNA replicating capacity of isolated E. coli cell wall-membrane complexes. Nature. 1970 May 23;226(5247):713–717. doi: 10.1038/226713a0. [DOI] [PubMed] [Google Scholar]
  10. PENE J. J., ROMIG W. R. ON THE MECHANISM OF GENETIC RECOMBINATION IN TRANSFORMING BACILLUS SUBTILIS. J Mol Biol. 1964 Jul;9:236–245. doi: 10.1016/s0022-2836(64)80103-0. [DOI] [PubMed] [Google Scholar]
  11. Pène J. J. Host macromolecular synthesis in bacteriophage-infected Bacillus subtilis. Bacteriol Rev. 1968 Dec;32(4 Pt 1):379–386. [PMC free article] [PubMed] [Google Scholar]
  12. Pène J. J., Marmur J. Deoxyribonucleic acid replication and expression of early and late bacteriophage functions in Bacillus subtilis. J Virol. 1967 Feb;1(1):86–91. doi: 10.1128/jvi.1.1.86-91.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Pène J. J. Modification of transcription following interaction of template specific monomers of Bacillus subtilis RNA polymerase. Nature. 1969 Aug 16;223(5207):705–707. doi: 10.1038/223705a0. [DOI] [PubMed] [Google Scholar]
  14. Rosenberg B. H., Cavalieri L. F. Shear sensitivity of the E. coli genome: multiple membrane attachment points of the E. coli DNA. Cold Spring Harb Symp Quant Biol. 1968;33:65–72. doi: 10.1101/sqb.1968.033.01.012. [DOI] [PubMed] [Google Scholar]
  15. Ryter A. Association of the nucleus and the membrane of bacteria: a morphological study. Bacteriol Rev. 1968 Mar;32(1):39–54. doi: 10.1128/br.32.1.39-54.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Salivar W. O., Sinsheimer R. L. Intracellular location and number of replicating parental DNA molecules of bacteriophages lambda and phi-X174. J Mol Biol. 1969 Apr 14;41(1):39–65. doi: 10.1016/0022-2836(69)90124-7. [DOI] [PubMed] [Google Scholar]
  17. Smith D. W., Hanawalt P. C. Properties of the growing point region in the bacterial chromosome. Biochim Biophys Acta. 1967 Dec 19;149(2):519–531. doi: 10.1016/0005-2787(67)90180-3. [DOI] [PubMed] [Google Scholar]
  18. Smith D. W., Schaller H. E., Bonhoeffer F. J. DNA synthesis in vitro. Nature. 1970 May 23;226(5247):711–713. doi: 10.1038/226711a0. [DOI] [PubMed] [Google Scholar]
  19. Snyder R. W., Young F. E. Association between the chromosome and the cytoplasmic membrane in Bacillus subtilis. Biochem Biophys Res Commun. 1969 May 8;35(3):354–362. doi: 10.1016/0006-291x(69)90506-3. [DOI] [PubMed] [Google Scholar]
  20. Spizizen J. TRANSFORMATION OF BIOCHEMICALLY DEFICIENT STRAINS OF BACILLUS SUBTILIS BY DEOXYRIBONUCLEATE. Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1072–1078. doi: 10.1073/pnas.44.10.1072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sueoka N., Quinn W. G. Membrane attachment of the chromosome replication origin in Bacillus subtilis. Cold Spring Harb Symp Quant Biol. 1968;33:695–705. doi: 10.1101/sqb.1968.033.01.078. [DOI] [PubMed] [Google Scholar]
  22. Tremblay G. Y., Daniels M. J., Schaechter M. Isolation of a cell membrane-DNA-nascent RNA complex from bacteria. J Mol Biol. 1969 Feb 28;40(1):65–76. doi: 10.1016/0022-2836(69)90296-4. [DOI] [PubMed] [Google Scholar]
  23. YOSHIKAWA H., SUEOKA N. Sequential replication of Bacillus subtilis chromosome. I. Comparison of marker frequencies in exponential and stationary growth phases. Proc Natl Acad Sci U S A. 1963 Apr;49:559–566. doi: 10.1073/pnas.49.4.559. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES