Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1972 Feb;109(2):512–519. doi: 10.1128/jb.109.2.512-519.1972

Biochemistry and Genetics of Galactose Metabolism in Group H Streptococcus Strain Challis

Geraldine H Luginbuhl 1, Harry Gooder 1
PMCID: PMC285170  PMID: 5058440

Abstract

Galactose-negative mutants of the group H Streptococcus strain Challis were obtained by treatment with nitrosoguanidine. Enzyme assays of extracts of these mutants revealed that 12 of the mutants were lacking one of the enzymes of the Leloir pathway. Thus, the Leloir pathway is the major means of galactose metabolism in strain Challis. In addition, uridyl diphosphate galactose pyrophosphorylase, a permease function, and at least one other function are required for the utilization of galactose. The enzymes of the Leloir pathway are induced by galactose and fucose; no compounds which act as repressors of these enzymes have been found, although the system appears to be sensitive to catabolite repression. Transformation was used to map the mutants. The genes for galactose-1-phosphate uridyl transferase and glucose-4-epimerase appear to be closely linked. Within the transferase gene, six mutations have been mapped. The permease function and the undetermined functions are not linked to the Leloir pathway.

Full text

PDF
517

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BUTTIN G. M'ECANISMES R'EGULATEURS DANS LA BIOSYNTH'ESE DES ENZYMES DU M'ETABOLISME DU GALACTOSE CHEZ ESCHERICHIA COLI K12. I. LA BIOSYNTH'ESE INDUITE DE LA GALACTOKINASE ET L'INDUCTION SIMULTAN'EE DE LA S'EQUENCE ENZYMATIQUE. J Mol Biol. 1963 Aug;7:164–182. doi: 10.1016/s0022-2836(63)80044-3. [DOI] [PubMed] [Google Scholar]
  3. BUTTIN G. M'ECANISMES R'EGULATEURS DANS LA BIOSYNTH'ESE DES ENZYMES DU M'ETABOLISME DU GALACTOSE CHEZ ESCHERICHIA COLI K12. II. LE D'ETERMINISME G'EN'ETIQUE DE LA R'EGULATION. J Mol Biol. 1963 Aug;7:183–205. doi: 10.1016/s0022-2836(63)80045-5. [DOI] [PubMed] [Google Scholar]
  4. CITTI J. E., SANDINE W. E., ELLIKER P. R. BETA-GALACTOSIDASE OF STREPTOCOCCUS LACTIS. J Bacteriol. 1965 Apr;89:937–942. doi: 10.1128/jb.89.4.937-942.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Citti J. E., Sandine W. E., Elliker P. R. Lactose and maltose uptake by Streptococcus lactis. J Dairy Sci. 1967 Apr;50(4):485–487. doi: 10.3168/jds.S0022-0302(67)87451-4. [DOI] [PubMed] [Google Scholar]
  6. DOUGLAS H. C., HAWTHORNE D. C. ENZYMATIC EXPRESSION AND GENETIC LINKAGE OF GENES CONTROLLING GALACTOSE UTILIZATION IN SACCHAROMYCES. Genetics. 1964 May;49:837–844. doi: 10.1093/genetics/49.5.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Douglas H. C., Hawthorne D. C. Regulation of genes controlling synthesis of the galactose pathway enzymes in yeast. Genetics. 1966 Sep;54(3):911–916. doi: 10.1093/genetics/54.3.911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dubnau D., Goldthwaite C., Smith I., Marmur J. Genetic mapping in Bacillus subtilis. J Mol Biol. 1967 Jul 14;27(1):163–185. doi: 10.1016/0022-2836(67)90358-0. [DOI] [PubMed] [Google Scholar]
  9. ECHOLS H., REZNICHEK J., ADHYA S. COMPLEMENTATION, RECOMBINATION, AND SUPPRESSION IN GALACTOSE NEGATIVE MUTANTS OF E. COLI. Proc Natl Acad Sci U S A. 1963 Aug;50:286–293. doi: 10.1073/pnas.50.2.286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. FUKASAWA T., JOKURA K., KURAHASHI K. MUTATIONS IN ESCHERICHIA COLI THAT AFFECT URIDINE DIPHOSPHATE GLUCOSE PYROPHOSPHORYLASE ACTIVITY AND GALACTOSE FERMENTATION. Biochim Biophys Acta. 1963 Sep 10;74:608–620. doi: 10.1016/0006-3002(63)91412-4. [DOI] [PubMed] [Google Scholar]
  11. JORDAN E., YARMOLINSKY M. B., KALCKAR H. M. Control of inducibility of enzymes of the galactose sequence in Escherichia coli. Proc Natl Acad Sci U S A. 1962 Jan 15;48:32–40. doi: 10.1073/pnas.48.1.32. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. JOSHI J. G., HANDLER P. PHOSPHOGLUCOMUTASE. I. PURIFICATION AND PROPERTIES OF PHOSPHOGLUCOMUTASE FROM ESCHERICHIA COLI. J Biol Chem. 1964 Sep;239:2741–2751. [PubMed] [Google Scholar]
  13. Kalckar H. M., Kurahashi K., Jordan E. HEREDITARY DEFECTS IN GALACTOSE METABOLISM IN ESCHERICHIA COLI MUTANTS, I. DETERMINATION OF ENZYME ACTIVITIES. Proc Natl Acad Sci U S A. 1959 Dec;45(12):1776–1786. doi: 10.1073/pnas.45.12.1776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Lacks S. Genetic regulation of maltosaccharide utilization in Pneumococcus. Genetics. 1968 Dec;60(4):685–706. doi: 10.1093/genetics/60.4.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lacks S. Integration efficiency and genetic recombination in pneumococcal transformation. Genetics. 1966 Jan;53(1):207–235. doi: 10.1093/genetics/53.1.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lawson J. W., Gooder H. Growth and development of competence in the group H streptococci. J Bacteriol. 1970 Jun;102(3):820–825. doi: 10.1128/jb.102.3.820-825.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. MASTER R. W. POSSIBLE SYNTHESIS OF POLYRIBONUCLEOTIDES OF KNOWN BASE-TRIPLET SEQUENCES. Nature. 1965 Apr 3;206:93–93. doi: 10.1038/206093b0. [DOI] [PubMed] [Google Scholar]
  19. McKay L. L., Walter L. A., Sandine W. E., Elliker P. R. Involvement of phosphoenolpyruvate in lactose utilization by group N streptococci. J Bacteriol. 1969 Aug;99(2):603–610. doi: 10.1128/jb.99.2.603-610.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. McKay L., Miller A., 3rd, Sandine W. E., Elliker P. R. Mechanisms of lactose utilization by lactic acid streptococci: enzymatic and genetic analyses. J Bacteriol. 1970 Jun;102(3):804–809. doi: 10.1128/jb.102.3.804-809.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. PAZUR J. H., ANDERSON J. S. THYMIDINE TRIPHOSPHATE: ALPHA-D-GALACTOSE 1-PHOSPHATE THYMJ 1-PHOSPHATE THYMIDYLYLTRANSFERASE FROM STREPTOCOCCUS FAECALIS GROWN ON D-GALACTOSE. J Biol Chem. 1963 Oct;238:3155–3160. [PubMed] [Google Scholar]
  22. Rotman B., Ganesan A. K., Guzman R. Transport systems for galactose and galactosides in Escherichia coli. II. Substrate and inducer specificities. J Mol Biol. 1968 Sep 14;36(2):247–260. doi: 10.1016/0022-2836(68)90379-3. [DOI] [PubMed] [Google Scholar]
  23. SHERMAN J. R., ADLER J. Galactokinse from Escherichia coli. J Biol Chem. 1963 Mar;238:873–878. [PubMed] [Google Scholar]
  24. Saedler H., Gullon A., Fiethen L., Starlinger P. Negative control of the galactose operon in E. coli. Mol Gen Genet. 1968;102(1):79–88. doi: 10.1007/BF00341872. [DOI] [PubMed] [Google Scholar]
  25. Shapiro J. A., Adhya S. L. The galactose operon of E. coli K-12. II. A deletion analysis of operon structure and polarity. Genetics. 1969 Jun;62(2):249–264. doi: 10.1093/genetics/62.2.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Vakil J. R., Shahani K. M. Carbohydrate metabolism of lactic acid cultures. 3. Glycolytic enzymes of Streptococcus lactis and their sensitivity to antibiotics. Can J Microbiol. 1969 Jul;15(7):753–759. doi: 10.1139/m69-132. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES