Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1972 Feb;109(2):616–625. doi: 10.1128/jb.109.2.616-625.1972

Specific Effects of Heating of Transformable Streptococci on Their Ability to Discriminate Between Homospecific, Heterospecific, and Hybrid Deoxyribonucleic Acid

Arnold W Ravin 1, Michael Ma 1
PMCID: PMC285185  PMID: 4621682

Abstract

Heating competent bacteria of the Challis strain of Streptococcus at a temperature of 48 C causes them to lose their transformability and mainfest a slight retardation of growth rate without loss of viability. The heat-induced loss of transformability is due to diminution in the ability of the bacteria to bind deoxyribonucleic acid (DNA) irreversibly. Another effect of heat is upon a step in the transformation process subsequent to binding, a step in which DNA molecules will compete if they multiply infect an unheated cell. Despite the reduction in irreversible binding exhibited by heated cells, competition between DNA molecules to transform these cells is decreased. Neither of these sites affected by heat exhibits any specificity with regard to origin of DNA. Since heat treatment causes a relative stimulation of transformation by heterospecific DNA, a third effect of heat must be envisaged. The amount of heat-induced stimulation is dependent upon the amount of heterospecific material in the transforming DNA. Linkage of heterospecific markers is increased as a consequence of heating the recipients. Transformation by markers of different transforming efficiency in homospecific DNA is also affected by heat treatment in a differential manner. Taken together, these results point to a heat-sensitive intracellular mechanism that recognizes DNA base sequences during transformation. The effect of heat upon discrimination against heterospecific DNA has been found to occur also in the pneumococcus and in Bacillus subtilis.

Full text

PDF
618

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arber W., Linn S. DNA modification and restriction. Annu Rev Biochem. 1969;38:467–500. doi: 10.1146/annurev.bi.38.070169.002343. [DOI] [PubMed] [Google Scholar]
  2. Beattie K. L., Setlow J. K. Transformation between Haemophilus influenzae and Haemophilus parainfluenzae. J Bacteriol. 1970 Oct;104(1):390–400. doi: 10.1128/jb.104.1.390-400.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Biswas G. D., Ravin A. W. Heterospecific transformation of Pneumococcus and Streptococcus. IV. Variations in hybrid DNA produced by recombination. Mol Gen Genet. 1971;110(1):1–22. doi: 10.1007/BF00276040. [DOI] [PubMed] [Google Scholar]
  4. Chen K. C., Ravin A. W. Mechanism of the deoxyribonucleic acid helping effect during transformation. J Mol Biol. 1968 May 14;33(3):873–891. doi: 10.1016/0022-2836(68)90325-2. [DOI] [PubMed] [Google Scholar]
  5. LERMAN L. S., TOLMACH L. J. Genetic transformation. I. Cellular incorporation of DNA accompanying transformation in Pneumococcus. Biochim Biophys Acta. 1957 Oct;26(1):68–82. doi: 10.1016/0006-3002(57)90055-0. [DOI] [PubMed] [Google Scholar]
  6. McCarthy C., Nester E. W. Heat-sensitive step in deoxyribonucleic acid-mediated transformation of Bacillus subtilis. J Bacteriol. 1969 Jan;97(1):162–165. doi: 10.1128/jb.97.1.162-165.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. RAVIN A. W., DESA J. H. GENETIC LINKAGE OF MUTATIONAL SITES AFFECTING SIMILAR CHARACTERS IN PNEUMOCOCCUS AND STREPTOCOCCUS. J Bacteriol. 1964 Jan;87:86–96. doi: 10.1128/jb.87.1.86-96.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. ROTHEIM M. B., RAVIN A. W. The mapping of genetic loci affecting streptomycin resistance in Pneumococcus. Genetics. 1961 Dec;46:1619–1634. doi: 10.1093/genetics/46.12.1619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ravin A. W., Chen K. C. Heterospecific transformation of pneumococcus and streptococcus. 3. Reduction of linkage. Genetics. 1967 Dec;57(4):851–864. doi: 10.1093/genetics/57.4.851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. SCHAEFFER P. Interspecific reactions in bacterial transformation. Symp Soc Exp Biol. 1958;12:60–74. [PubMed] [Google Scholar]
  11. Steinhart W. L., Herriott R. M. Genetic integration in the heterospecific transformation of Haemophilus influenzae cells by Haemophilus parainfluenzae deoxyribonucleic acid. J Bacteriol. 1968 Nov;96(5):1725–1731. doi: 10.1128/jb.96.5.1725-1731.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES