Abstract
Phosphoglycerate kinase levels in Hydrogenomonas facilis were reasonably constant whether cells were utilizing or synthesizing hexose during growth. Specific enzyme activities (micromoles of 3-phosphoglycerate disappearing per minute per milligram of protein) at 30 C were 0.234, 0.391, 0.300, and 0.229 in the “soluble” fraction derived from cells grown on fructose, lactate, succinate, and glutamate, respectively. The enzyme was purified 300-fold from succinate-grown cells. The final preparation, which was not homogenous but was free from glyceraldehyde-3-phosphate dehydrogenase and adenylate kinase, had a specific activity at 30 C of 90 μmoles of 3-phosphoglycerate per min per mg of protein. Km values for adenosine triphosphate (ATP), 3-phosphoglycerate, and Mg++ were 0.16, 0.83, and 0.4 mm, respectively, at pH 7.4 and 30 C. Adenosine monophosphate (AMP) inhibited 23% at a ratio of AMP to ATP of 2.4, and the possible physiological implications of this inhibition are discussed. No evidence was found for an enzyme which catalyzes ATP-dependent conversion of 3-phosphoglycerate to 1,3-diphosphoglycerate, AMP, and phosphate.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- AXELROD B., BANDURSKI R. S. Phosphoglyceryl kinase in higher plants. J Biol Chem. 1953 Oct;204(2):939–948. [PubMed] [Google Scholar]
- Atkinson D. E., Walton G. M. Adenosine triphosphate conservation in metabolic regulation. Rat liver citrate cleavage enzyme. J Biol Chem. 1967 Jul 10;242(13):3239–3241. [PubMed] [Google Scholar]
- BERGMANN F. H., TOWNE J. C., BURRIS R. H. Assimilation of carbon dioxide by hydrogen bacteria. J Biol Chem. 1958 Jan;230(1):13–24. [PubMed] [Google Scholar]
- Buchanan B. B., Evans M. C. The synthesis of phosphoendolpyruvate from pyruvate and ATP by extracts of photosynthetic bacteria. Biochem Biophys Res Commun. 1966 Mar 8;22(5):484–487. doi: 10.1016/0006-291x(66)90299-3. [DOI] [PubMed] [Google Scholar]
- Cooper R. A., Kornberg H. L. Net formation of phosphoenolpyruvate from pyruvate by Escherichia coli. Biochim Biophys Acta. 1965 Jul 8;104(2):618–620. doi: 10.1016/0304-4165(65)90374-0. [DOI] [PubMed] [Google Scholar]
- DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
- GOTTSCHALK G., EBERHARDT U., SCHLEGEL H. G. VERWERTUNG VON FRUCTOSE DURCH HYDROGENOMONAS H 16. (I.) Arch Mikrobiol. 1964 Apr 2;48:95–108. [PubMed] [Google Scholar]
- HASHIMOTO T., YOSHIKAWA H. HUMAN ERYTHROCYTE ADENOSINE TRIPHOSPHATE. D-3-PHOSPHOGLYCERATE 1-PHOSPHOTRANSFERASE. J Biochem. 1964 Sep;56:279–284. doi: 10.1093/oxfordjournals.jbchem.a127990. [DOI] [PubMed] [Google Scholar]
- HIRSCH P. CO2-FIXIERUNG DURCH KNALLGASBAKTERIEN. II. CHROMATOGRAPHISCHER NACHWEIS DER FRUEHZEITIGEN FIXIERUNGSPRODUKTE. Arch Mikrobiol. 1963 Jul 18;46:53–78. [PubMed] [Google Scholar]
- HIRSCH P., GEORGIEV G., SCHLEGEL H. G. CO2-FIXIERUNG DURCH KNALLGASBAKTERIEN. III. AUTOTROPHE UND ORGANOTROPHE CO2-FIXIERUNG. Arch Mikrobiol. 1963 Jul 18;46:79–95. [PubMed] [Google Scholar]
- Klungsoyr L., Hagemen J. H., Fall L., Atkinson D. E. Interaction between energy charge and product feedback in the regulation of biosynthetic enzymes. Aspartokinase, phosphoribosyladenosine triphosphate synthetase, and phosphoribosyl pyrophosphate synthetase. Biochemistry. 1968 Nov;7(11):4035–4040. doi: 10.1021/bi00851a034. [DOI] [PubMed] [Google Scholar]
- Krietsch W. K., Bücher T. 3-phosphoglycerate kinase from rabbit sceletal muscle and yeast. Eur J Biochem. 1970 Dec;17(3):568–580. doi: 10.1111/j.1432-1033.1970.tb01202.x. [DOI] [PubMed] [Google Scholar]
- Kuehn G. D., McFadden B. A. Enzymes of the Entner-Doudoroff path in fructose-grown Hydrogenomonas eutropha. Can J Microbiol. 1968 Nov;14(11):1259–1260. doi: 10.1139/m68-209. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Mandel P. Free nucleotides in animal tissues. Prog Nucleic Acid Res Mol Biol. 1964;3:299–334. doi: 10.1016/s0079-6603(08)60744-8. [DOI] [PubMed] [Google Scholar]
- McFADDEN B. A. Some products of C1402 fixation by Hydrogenomonas facilis. J Bacteriol. 1959 Mar;77(3):339–343. doi: 10.1128/jb.77.3.339-343.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
- OLIVER I. T. A spectrophotometric method for the determination of creatine phosphokinase and myokinase. Biochem J. 1955 Sep;61(1):116–122. doi: 10.1042/bj0610116. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SCHATZ A., BOVELL C., Jr Growth and hydrogenase activity of a new bacterium, Hydrogenomonas facilis. J Bacteriol. 1952 Jan;63(1):87–98. doi: 10.1128/jb.63.1.87-98.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SCHLEGEL H. G., GOTTSCHALK G. VERWERTUNG VON GLUCOSE DURCH EINE MUTANTE VON HYDROGENOMONAS H 16. Biochem Z. 1965 Feb 24;341:249–259. [PubMed] [Google Scholar]
- Schlegel H. G. Physiology and biochemistry of knallgasbacteria. Adv Comp Physiol Biochem. 1966;2:185–236. doi: 10.1016/b978-0-12-395511-1.50008-1. [DOI] [PubMed] [Google Scholar]
- Schuster E., Schlegel H. G. Chemolithotrophes Wachstum von Hydrogenomonas H16 im Chemostaten mit elektrolytischer Knallgaserzeugung. Arch Mikrobiol. 1967;58(4):380–409. [PubMed] [Google Scholar]
- Scopes R. K. Crystalline 3-phosphoglycerate kinase from skeletal muscle. Biochem J. 1969 Jul;113(3):551–554. doi: 10.1042/bj1130551. [DOI] [PMC free article] [PubMed] [Google Scholar]