Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1973 Jun;114(3):943–950. doi: 10.1128/jb.114.3.943-950.1973

Ammonium Regulation in Aspergillus nidulans

J A Pateman 1, J R Kinghorn 1, Etta Dunn 1, E Forbes 1
PMCID: PMC285348  PMID: 4145865

Abstract

l-Glutamate uptake, thiourea uptake, and methylammonium uptake and the intracellular ammonium concentration were measured in wild-type and mutant cells of Aspergillus nidulans held in various concentrations of ammonium and urea. The levels of l-glutamate uptake, thiourea uptake, nitrate reductase, and hypoxanthine dehydrogenase activity are determined by the extracellular ammonium concentration. The level of methylammonium uptake is determined by the intracellular ammonium concentration. The uptake and enzyme characteristics of the ammonium-derepressed mutants, meaA8, meaB6, DER3, amrA1, xprD1, and gdhA1, are described. The gdhA mutants lack normal nicotinamide adenine dinucleotide phosphate-glutamate dehydrogenase (NADP-GDH) activity and are derepressed with respect to both external and internal ammonium. The other mutant classes are derepressed only with respect to external ammonium. The mutants meaA8, DER3, amrA1, and xprD1 have low levels of one or more of the l-glutamate, thiourea, and methylammonium uptake systems. A model for ammonium regulation in A. nidulans is put forward which suggests: (i) NADP-GDH located in the cell membrane complexes with extracellular ammonium. This first regulatory complex determines the level of l-glutamate uptake, thiourea uptake, nitrate reductase, and xanthine dehydrogenase by repression or inhibition, or both. (ii) NADP-GDH also complexes with intracellular ammonium. This second and different form of regulatory complex determines the level of methylammonium uptake by repression or inhibition, or both.

Full text

PDF
947

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arst H. N., Jr, Cove D. J. Methylammonium resistance in Aspergillus nidulans. J Bacteriol. 1969 Jun;98(3):1284–1293. doi: 10.1128/jb.98.3.1284-1293.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cove D. J. The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. Biochim Biophys Acta. 1966 Jan 11;113(1):51–56. doi: 10.1016/s0926-6593(66)80120-0. [DOI] [PubMed] [Google Scholar]
  3. Grenson M., Hou C. Ammonia inhibition of the general amino acid permease and its suppression in NADPH-specific glutamate dehydrogenaseless mutants of saccharomyces cerevisiae. Biochem Biophys Res Commun. 1972 Aug 21;48(4):749–756. doi: 10.1016/0006-291x(72)90670-5. [DOI] [PubMed] [Google Scholar]
  4. Hynes M. J., Pateman J. A. The genetic analysis of regulation of amidase synthesis in Aspergillus nidulans. I. Mutants able to utilize acrylamide. Mol Gen Genet. 1970;108(2):97–106. doi: 10.1007/BF02430516. [DOI] [PubMed] [Google Scholar]
  5. Hynes M. J., Pateman J. A. The genetic analysis of regulation of amidase synthesis in Aspergillus nidulans. II. Mutants resistant to fluoroacetamide. Mol Gen Genet. 1970;108(2):107–116. doi: 10.1007/BF02430517. [DOI] [PubMed] [Google Scholar]
  6. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  7. McCully K. S., Forbes E. The use of p-fluorophenylalanine with 'master strains' of Aspergillus nidulans for assigning genes to linkage groups. Genet Res. 1965 Nov;6(3):352–359. doi: 10.1017/s0016672300004249. [DOI] [PubMed] [Google Scholar]
  8. PONTECORVO G., ROPER J. A., HEMMONS L. M., MACDONALD K. D., BUFTON A. W. J. The genetics of Aspergillus nidulans. Adv Genet. 1953;5:141–238. doi: 10.1016/s0065-2660(08)60408-3. [DOI] [PubMed] [Google Scholar]
  9. Pateman J. A., Cove D. J. Regulation of nitrate reduction in Aspergillus nidulans. Nature. 1967 Sep 16;215(5107):1234–1237. doi: 10.1038/2151234a0. [DOI] [PubMed] [Google Scholar]
  10. Pateman J. A. Regulation of synthesis of glutamate dehydrogenase and glutamine synthetase in micro-organisms. Biochem J. 1969 Dec;115(4):769–775. doi: 10.1042/bj1150769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Pateman J. A., Rever B. M., Cove D. J. Genetic and biochemical studies of nitrate reduction in Aspergillus nidulans. Biochem J. 1967 Jul;104(1):103–111. doi: 10.1042/bj1040103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Scazzocchio C., Darlington A. J. The induction and repression of the enzymes of purine breakdown in Aspergillus nidulans. Biochim Biophys Acta. 1968 Sep 24;166(2):557–568. doi: 10.1016/0005-2787(68)90243-8. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES