Abstract
Cycloheximide (actidione) has an immediate inhibitory effect on amino acid transport by nitrogen-starved or carbon-starved mycelium suspended in phosphate buffer. High concentrations of phosphate alone are slightly inhibitory; cycloheximide appears to potentiate the effect of phosphate. Ca2+ reverses the inhibition of transport caused by phosphate plus cycloheximide. Ca2+ did not relieve the inhibition of protein synthesis. Cycloheximide promotes a continual uptake of 45Ca2+ by the mycelium. The cumulative results suggest that (i) membrane-bound Ca2+ is involved in amino acid transport, (ii) cycloheximide labilizes the membrane-bound Ca2+, and (iii) phosphate forms a complex with Ca2+ making it unavailable for its role in transport. The effect of cycloheximide described above is observed within 1 to 2 min after addition of the antibiotic. This initial inhibition occurs more rapidly with 10−3 M cycloheximide than with 10−5 M cycloheximide. However, after a longer preincubation time, a curious inverse relationship between cycloheximide concentration and amino acid transport is observed. The mycelium incubated with 10−5 M cycloheximide remains strongly inhibited (unless the antibiotic is washed away). The mycelium incubated with 10−3 M cycloheximide recovers about 40% of the transport activity lost during the rapid initial phase. We have no obvious explanation for the inverse effect.
Full text
PDF![956](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c99/285350/630676ff9cf4/jbacter00577-0070.png)
![957](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c99/285350/75a99816e859/jbacter00577-0071.png)
![958](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c99/285350/1a3769de0851/jbacter00577-0072.png)
![959](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c99/285350/419895a56ca5/jbacter00577-0073.png)
![960](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c99/285350/b1e1d778ac32/jbacter00577-0074.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bellenger N., Nissen P., Wood T. C., Segel I. H. Specificity and control of choline-O-sulfate transport in filamentous fungi. J Bacteriol. 1968 Nov;96(5):1574–1585. doi: 10.1128/jb.96.5.1574-1585.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benko P. V., Wood T. C., Segel I. H. Multiplicity and regulation of amino acid transport in Penicillium chrysogenum. Arch Biochem Biophys. 1969 Feb;129(2):498–508. doi: 10.1016/0003-9861(69)90207-0. [DOI] [PubMed] [Google Scholar]
- Cameron L. E., LéJohn H. B. On the involvement of calcium in amino acid transport and growth of the fungus Achlya. J Biol Chem. 1972 Aug 10;247(15):4729–4739. [PubMed] [Google Scholar]
- Evans W. R. The effect of cycloheximide on membrane transport in Euglena. A comparative study with nigericin. J Biol Chem. 1971 Oct 25;246(20):6144–6151. [PubMed] [Google Scholar]
- Grenson M., Crabeel M., Wiame J. M., Béchet J. Inhibition of protein synthesis and simulation of permease turnover in yeast. Biochem Biophys Res Commun. 1968 Feb 26;30(4):414–419. doi: 10.1016/0006-291x(68)90760-2. [DOI] [PubMed] [Google Scholar]
- Hackette S. L., Skye G. E., Burton C., Segel I. H. Characterization of an ammonium transport system in filamentous fungi with methylammonium-14C as the substrate. J Biol Chem. 1970 Sep 10;245(17):4241–4250. [PubMed] [Google Scholar]
- Hunter D. R., Segel I. H. Acidic and basic amino acid transport systems of Penicillium chrysogenum. Arch Biochem Biophys. 1971 May;144(1):168–183. doi: 10.1016/0003-9861(71)90466-8. [DOI] [PubMed] [Google Scholar]
- Hunter D. R., Segel I. H. Control of the general amino acid permease of Penicillium chrysogenum by transinhibition and turnover. Arch Biochem Biophys. 1973 Jan;154(1):387–399. doi: 10.1016/0003-9861(73)90071-4. [DOI] [PubMed] [Google Scholar]
- Hunter D. R., Segel I. H. Effect of weak acids on amino acid transport by Penicillium chrysogenum: evidence for a proton or charge gradient as the driving force. J Bacteriol. 1973 Mar;113(3):1184–1192. doi: 10.1128/jb.113.3.1184-1192.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marzluf G. A. Control of the synthesis, activity, and turnover of enzymes of sulfur metabolism in Neurospora crassa. Arch Biochem Biophys. 1972 Jun;150(2):714–724. doi: 10.1016/0003-9861(72)90090-2. [DOI] [PubMed] [Google Scholar]
- Reilly C., Fuhrmann G. F., Rethstein A. The inhibition of K + and phosphate uptake in yeast by cycloheximide. Biochim Biophys Acta. 1970 Jun 2;203(3):583–585. doi: 10.1016/0005-2736(70)90197-5. [DOI] [PubMed] [Google Scholar]
- SIEGEL M. R., SISLER H. D. INHIBITION OF PROTEIN SYNTHESIS IN VITRO BY CYCLOHEXIMIDE. Nature. 1963 Nov 16;200:675–676. doi: 10.1038/200675a0. [DOI] [PubMed] [Google Scholar]
- Skye G. E., Segel I. H. Independent regulation of cysteine and cystine transport in Penicillium chrysogenum. Arch Biochem Biophys. 1970 May;138(1):306–318. doi: 10.1016/0003-9861(70)90311-5. [DOI] [PubMed] [Google Scholar]
- Wiley W. R., Matchett W. H. Tryptophan transport in Neurospora crassa. II. Metabolic control. J Bacteriol. 1968 Mar;95(3):959–966. doi: 10.1128/jb.95.3.959-966.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]