Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1973 Jun;114(3):1045–1051. doi: 10.1128/jb.114.3.1045-1051.1973

Genetic Mutations Affecting the Respiratory Electron-Transport System of the Photosynthetic Bacterium Rhodopseudomonas capsulata

Barry Marrs a,1, Howard Gest a
PMCID: PMC285363  PMID: 4351385

Abstract

Alternative energy-converting systems permit the nonsulfur purple photosynthetic bacterium Rhodopseudomonas capsulata to grow either with light or (dark) respiration as the source of energy. Respiratory mutants, unable to grow aerobically in darkness, can be readily isolated and the defective step(s) in their respiratory mechanisms can be identified by study of biochemical activities in membrane fragments derived from photosynthetically grown cells. Such analysis of appropriate mutants and revertants permits construction of a model for the respiratory electron-transport system of the wild type. The results obtained indicate differential channeling of electrons derived from succinate and reduced nicotinamide adenine dinucleotide, and are interpreted in terms of a branched electron-transport scheme. The scheme provides a guide for further, more refined analysis of the respiratory mechanisms through biochemical genetic approaches, and several of the mutants isolated can be exploited for investigation of unsolved problems relating to interactions between respiratory and photosynthetic electron transport and the mechanism of inhibition of bacteriochlorophyll synthesis by molecular oxygen.

Full text

PDF
1047

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Harold F. M. Conservation and transformation of energy by bacterial membranes. Bacteriol Rev. 1972 Jun;36(2):172–230. doi: 10.1128/br.36.2.172-230.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Klemme J. H., Schlegel H. G. Untersuchungen zum Cytochrom-Oxydase-System aus anaerob im Licht und aerob im Dunkeln gewachsenen Zellen von Rhodopseudomonas capsulata. Arch Mikrobiol. 1969;68(4):326–354. [PubMed] [Google Scholar]
  3. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  4. Marrs B., Gest H. Regulation of bacteriochlorophyll synthesis by oxygen in respiratory mutants of Rhodopseudomonas capsulata. J Bacteriol. 1973 Jun;114(3):1052–1057. doi: 10.1128/jb.114.3.1052-1057.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Marrs B., Stahl C. L., Lien S., Gest H. Biochemical physiology of a respiration-deficient mutant of the photosynthetic bacterium Rhodopseudomonas capsulata. Proc Natl Acad Sci U S A. 1972 Apr;69(4):916–920. doi: 10.1073/pnas.69.4.916. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Melandri B. A., Baccarini-Melandri A., San Pietro A., Gest H. Interchangeability of phosphorylation coupling factors in photosynthetic and respiratory energy conversion. Science. 1971 Oct 29;174(4008):514–516. doi: 10.1126/science.174.4008.514. [DOI] [PubMed] [Google Scholar]
  7. ORMEROD J. G., ORMEROD K. S., GEST H. Light-dependent utilization of organic compounds and photoproduction of molecular hydrogen by photosynthetic bacteria; relationships with nitrogen metabolism. Arch Biochem Biophys. 1961 Sep;94:449–463. doi: 10.1016/0003-9861(61)90073-x. [DOI] [PubMed] [Google Scholar]
  8. Oelze J., Drews G. Membranes of photosynthetic bacteria. Biochim Biophys Acta. 1972 Apr 18;265(2):209–239. doi: 10.1016/0304-4157(72)90003-2. [DOI] [PubMed] [Google Scholar]
  9. White D. C., Sinclair P. R. Branched electron-transport systems in bacteria. Adv Microb Physiol. 1971;5:173–211. doi: 10.1016/s0065-2911(08)60407-5. [DOI] [PubMed] [Google Scholar]
  10. Yamashita J., Yoshimura S., Matuo Y., Horio T. Relationship between photosynthetic and oxidative phosphorylations in chromatophores from light-grown cells of Rhodospirillum rubrum. Biochim Biophys Acta. 1967 Jul 5;143(1):154–172. doi: 10.1016/0005-2728(67)90118-1. [DOI] [PubMed] [Google Scholar]
  11. Yonetani T. Studies on cytochrome c peroxidase. II. Stoichiometry between enzyme, H2O2, and ferrocytochrome c and enzymic determination of extinction coefficients of cytochrome c. J Biol Chem. 1965 Nov;240(11):4509–4514. [PubMed] [Google Scholar]
  12. Zilinsky J. W., Sojka G. A., Gest H. Energy charge regulation in photosynthetic bacteria. Biochem Biophys Res Commun. 1971 Mar 5;42(5):955–961. doi: 10.1016/0006-291x(71)90523-7. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES