Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1969 Jan;62(1):155–162. doi: 10.1073/pnas.62.1.155

CHROMOSOMAL RECEPTOR FOR A VITAMIN D METABOLITE*

Mark R Haussler 1, Anthony W Norman 1
PMCID: PMC285968  PMID: 5253652

Abstract

Evidence has been presented for the existence of an acidic protein(s) or protein portion of a more complex molecule which has a high affinity for binding noncovalently a biologically active metabolite of vitamin D. This molecule could be solubilized from the residual chromatin via treatment with either 0.3 M KCl or high pH and has been purified 167-fold over the crude mucosa homogenate. Characterization of the still crude receptor fraction showed that it contains significant amounts of RNA and that it may exist in multiple forms, i.e., a 50,000-70,000 and a >200,000 molecular weight species. The binding capacity of the receptor fraction for the metabolite is saturated after administration of a physiological dose of the parent vitamin D.

Full text

PDF
159

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews P. Estimation of the molecular weights of proteins by Sephadex gel-filtration. Biochem J. 1964 May;91(2):222–233. doi: 10.1042/bj0910222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  3. DOWDLE E. B., SCHACHTER D., SCHENKER H. Requirement for vitamin D for the active transport of calcium by the intestine. Am J Physiol. 1960 Feb;198:269–274. doi: 10.1152/ajplegacy.1960.198.2.269. [DOI] [PubMed] [Google Scholar]
  4. Haussler M. R., Myrtle J. F., Norman A. W. The association of a metabolite of vitamin D3 with intestinal mucosa chromatin in vivo. J Biol Chem. 1968 Aug 10;243(15):4055–4064. [PubMed] [Google Scholar]
  5. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  6. Maurer H. R., Chalkley G. R. Some properties of a nuclear binding site of estradiol. J Mol Biol. 1967 Aug 14;27(3):431–441. doi: 10.1016/0022-2836(67)90049-6. [DOI] [PubMed] [Google Scholar]
  7. NORMAN A. W. ACTINOMYCIN D AND THE RESPONSE TO VITAMIN D. Science. 1965 Jul 9;149(3680):184–186. doi: 10.1126/science.149.3680.184. [DOI] [PubMed] [Google Scholar]
  8. Norman A. W. Actinomycin D effect on lag in vitamin D-mediated calcium absorption in the chick. Am J Physiol. 1966 Sep;211(3):829–834. doi: 10.1152/ajplegacy.1966.211.3.829. [DOI] [PubMed] [Google Scholar]
  9. Norman A. W. Vitamin D mediated synthesis of rapidly labeled RNA from intestinal mucosa. Biochem Biophys Res Commun. 1966 May 3;23(3):335–340. doi: 10.1016/0006-291x(66)90551-1. [DOI] [PubMed] [Google Scholar]
  10. Noteboom W. D., Gorski J. Stereospecific binding of estrogens in the rat uterus. Arch Biochem Biophys. 1965 Sep;111(3):559–568. doi: 10.1016/0003-9861(65)90235-3. [DOI] [PubMed] [Google Scholar]
  11. Stohs S. J., Zull J. E., DeLuca H. F. Vitamin D stimulation of [3H]orotic acid incorporation into ribonucleic acid of rat intestinal mucosa. Biochemistry. 1967 May;6(5):1304–1310. doi: 10.1021/bi00857a012. [DOI] [PubMed] [Google Scholar]
  12. Zull J. E., Czarnowska-Misztal E., DeLuca H. F. On the relationship between vitamin D action and actinomycin-sensitive processes. Proc Natl Acad Sci U S A. 1966 Jan;55(1):177–184. doi: 10.1073/pnas.55.1.177. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES