Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1970 May;66(1):104–110. doi: 10.1073/pnas.66.1.104

Mechanism of Activation of Catabolite-Sensitive Genes: A Positive Control System*

Geoffrey Zubay 1,2,, Daniele Schwartz 1,2,, Jon Beckwith 1,2,
PMCID: PMC286094  PMID: 4320461

Abstract

Catabolite repression is defined as the inhibition of enzyme induction by glucose or related substances. In the bacterium E. coli, the effect of glucose appears to be due to a lowering of the cyclic AMP level. A DNA-directed cell-free system for β-galactosidase synthesis has served as a model system for studying the mechanism of action of cyclic AMP. Previously, it was reported that in this system cyclic AMP is required for normal initiation of mRNA synthesis. A protein factor which acts in conjunction with the cyclic AMP has been partially purified. This protein factor has a high affinity for cyclic AMP. These and other results presented herein lead us to the conclusion that cyclic AMP and a protein factor called the catabolite gene activator protein are part of a positive control system for activating catabolite-sensitive genes.

Full text

PDF
106

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chambers D. A., Zubay G. The stimulatory effect of cyclic adenosine 3'5'-monophosphate on DNA-directed synthesis of beta-galactosidase in a cell-free system. Proc Natl Acad Sci U S A. 1969 May;63(1):118–122. doi: 10.1073/pnas.63.1.118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. MAGASANIK B. Catabolite repression. Cold Spring Harb Symp Quant Biol. 1961;26:249–256. doi: 10.1101/sqb.1961.026.01.031. [DOI] [PubMed] [Google Scholar]
  3. MAKMAN R. S., SUTHERLAND E. W. ADENOSINE 3',5'-PHOSPHATE IN ESCHERICHIA COLI. J Biol Chem. 1965 Mar;240:1309–1314. [PubMed] [Google Scholar]
  4. Murphey W. H., Kitto G. B., Everse J., Kaplan N. Malate dehydrogenases. I. A survey of molecular size measured by gel filtration. Biochemistry. 1967 Feb;6(2):603–610. doi: 10.1021/bi00854a031. [DOI] [PubMed] [Google Scholar]
  5. Perlman R. L., Pastan I. Regulation of beta-galactosidase synthesis in Escherichia coli by cyclic adenosine 3',5'-monophosphate. J Biol Chem. 1968 Oct 25;243(20):5420–5427. [PubMed] [Google Scholar]
  6. Silverstone A. E., Magasanik B., Reznikoff W. S., Miller J. H., Beckwith J. R. Catabolite sensitive site of the lac operon. Nature. 1969 Mar 15;221(5185):1012–1014. doi: 10.1038/2211012b0. [DOI] [PubMed] [Google Scholar]
  7. Ullmann A., Monod J. Cyclic AMP as an antagonist of catabolite repression in Escherichia coli. FEBS Lett. 1968 Nov;2(1):57–60. doi: 10.1016/0014-5793(68)80100-0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES