Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1989 Mar;86(6):1855–1859. doi: 10.1073/pnas.86.6.1855

Post-translational modifications in the large subunit of ribulose bisphosphate carboxylase/oxygenase.

R L Houtz 1, J T Stults 1, R M Mulligan 1, N E Tolbert 1
PMCID: PMC286803  PMID: 2928307

Abstract

Two adjacent N-terminal tryptic peptides of the large subunit of ribulose bisphosphate carboxylase/oxygenase [3-phospho-D-glycerate carboxy-lyase (dimerizing), EC 4.1.1.39] from spinach, wheat, tobacco, and muskmelon were removed by limited tryptic proteolysis. Characterization by peptide sequencing, amino acid composition, and tandem mass spectrometry revealed that the N-terminal residue from the large subunit of the enzyme from each plant species was acetylated proline. The sequence of the penultimate N-terminal tryptic peptide from the large subunit of the spinach and wheat enzyme was consistent with previous primary structure determinations. However, the penultimate N-terminal peptide from the large subunit of both the tobacco and muskmelon enzymes, while identical, differed from the corresponding peptide from spinach and wheat by containing a trimethyllysyl residue at position 14. Thus, tryptic proteolysis occurred at lysine-18 rather than lysine-14 as with the spinach and wheat enzymes. A comparison of the DNA sequences for the large subunit of ribulose bisphosphate carboxylase/oxygenase indicates that the N terminus has been post-translationally processed by removal of methionine-1 and serine-2 followed by acetylation of proline-3. In addition, for the enzyme from tobacco and muskmelon a third post-translational modification occurs at lysine-14 in the form of N epsilon-trimethylation.

Full text

PDF
1855

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chang F. N., Cohen L. B., Navickas I. J., Chang C. N. Purification and properties of a ribosomal protein methylase from Eschericha coli Q13. Biochemistry. 1975 Nov 4;14(22):4994–4998. doi: 10.1021/bi00693a032. [DOI] [PubMed] [Google Scholar]
  2. Chapman M. S., Suh S. W., Curmi P. M., Cascio D., Smith W. W., Eisenberg D. S. Tertiary structure of plant RuBisCO: domains and their contacts. Science. 1988 Jul 1;241(4861):71–74. doi: 10.1126/science.3133767. [DOI] [PubMed] [Google Scholar]
  3. Driessen H. P., de Jong W. W., Tesser G. I., Bloemendal H. The mechanism of N-terminal acetylation of proteins. CRC Crit Rev Biochem. 1985;18(4):281–325. doi: 10.3109/10409238509086784. [DOI] [PubMed] [Google Scholar]
  4. Gregori L., Marriott D., West C. M., Chau V. Specific recognition of calmodulin from Dictyostelium discoideum by the ATP, ubiquitin-dependent degradative pathway. J Biol Chem. 1985 May 10;260(9):5232–5235. [PubMed] [Google Scholar]
  5. Hemmingsen S. M., Woolford C., van der Vies S. M., Tilly K., Dennis D. T., Georgopoulos C. P., Hendrix R. W., Ellis R. J. Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature. 1988 May 26;333(6171):330–334. doi: 10.1038/333330a0. [DOI] [PubMed] [Google Scholar]
  6. Johnson R. S., Martin S. A., Biemann K., Stults J. T., Watson J. T. Novel fragmentation process of peptides by collision-induced decomposition in a tandem mass spectrometer: differentiation of leucine and isoleucine. Anal Chem. 1987 Nov 1;59(21):2621–2625. doi: 10.1021/ac00148a019. [DOI] [PubMed] [Google Scholar]
  7. Kettleborough C. A., Parry M. A., Burton S., Gutteridge S., Keys A. J., Phillips A. L. The role of the N-terminus of the large subunit of ribulose-bisphosphate carboxylase investigated by construction and expression of chimaeric genes. Eur J Biochem. 1987 Dec 30;170(1-2):335–342. doi: 10.1111/j.1432-1033.1987.tb13704.x. [DOI] [PubMed] [Google Scholar]
  8. McCurry S. D., Gee R., Tolbert N. E. Ribulose-1,5-bisphosphate carboxylase/oxygenase from spinach, tomato, or tobacco leaves. Methods Enzymol. 1982;90(Pt E):515–521. doi: 10.1016/s0076-6879(82)90178-1. [DOI] [PubMed] [Google Scholar]
  9. Mulligan R. M., Houtz R. L., Tolbert N. E. Reaction-intermediate analogue binding by ribulose bisphosphate carboxylase/oxygenase causes specific changes in proteolytic sensitivity: the amino-terminal residue of the large subunit is acetylated proline. Proc Natl Acad Sci U S A. 1988 Mar;85(5):1513–1517. doi: 10.1073/pnas.85.5.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Paik W. K., DiMaria P. Enzymatic methylation and demethylation of protein-bound lysine residues. Methods Enzymol. 1984;106:274–287. doi: 10.1016/0076-6879(84)06028-6. [DOI] [PubMed] [Google Scholar]
  11. Paik W. K., Kim S. Protein methylation: chemical, enzymological, and biological significance. Adv Enzymol Relat Areas Mol Biol. 1975;42:227–286. doi: 10.1002/9780470122877.ch5. [DOI] [PubMed] [Google Scholar]
  12. Pierce J. W., McCurry S. D., Mulligan R. M., Tolbert N. E. Activation and assay of ribulose-1,5-bisphosphate carboxylase/oxygenase. Methods Enzymol. 1982;89(Pt 500):47–55. doi: 10.1016/s0076-6879(82)89011-3. [DOI] [PubMed] [Google Scholar]
  13. Rowe P. M., Wright L. S., Siegel F. L. Calmodulin N-methyltransferase. Partial purification and characterization. J Biol Chem. 1986 May 25;261(15):7060–7069. [PubMed] [Google Scholar]
  14. Sarnow P., Rasched I., Knippers R. A histone H4-specific methyltransferase. Properties, specificity and effects on nucleosomal histones. Biochim Biophys Acta. 1981 Oct 27;655(3):349–358. doi: 10.1016/0005-2787(81)90045-9. [DOI] [PubMed] [Google Scholar]
  15. Schmidt G. W., Devillers-Thiery A., Desruisseaux H., Blobel G., Chua N. H. NH2-terminal amino acid sequences of precursor and mature forms of the ribulose-1,5-bisphosphate carboxylase small subunit from Chlamydomonas reinhardtii. J Cell Biol. 1979 Dec;83(3):615–622. doi: 10.1083/jcb.83.3.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Servaites J. C. Binding of a Phosphorylated Inhibitor to Ribulose Bisphosphate Carboxylase/Oxygenase during the Night. Plant Physiol. 1985 Aug;78(4):839–843. doi: 10.1104/pp.78.4.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Servaites J. C. Crystalline ribulose bisphosphate carboxylase/oxygenase of high integrity and catalytic activity from Nicotiana tabacum. Arch Biochem Biophys. 1985 Apr;238(1):154–160. doi: 10.1016/0003-9861(85)90151-1. [DOI] [PubMed] [Google Scholar]
  18. Shinozaki K., Sugiura M. The nucleotide sequence of the tobacco chloroplast gene for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Gene. 1982 Nov;20(1):91–102. doi: 10.1016/0378-1119(82)90090-7. [DOI] [PubMed] [Google Scholar]
  19. Smyth D. G., Massey D. E., Zakarian S., Finnie M. D. Endorphins are stored in biologically active and inactive forms: isolation of alpha-N-acetyl peptides. Nature. 1979 May 17;279(5710):252–254. doi: 10.1038/279252a0. [DOI] [PubMed] [Google Scholar]
  20. Tsunasawa S., Sakiyama F. Amino-terminal acetylation of proteins: an overview. Methods Enzymol. 1984;106:165–170. doi: 10.1016/0076-6879(84)06016-x. [DOI] [PubMed] [Google Scholar]
  21. WALLER J. P., DIXON H. B. Selective acetylation of the terminal amino group of corticotrophin. Biochem J. 1960 May;75:320–328. doi: 10.1042/bj0750320. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES