Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1989 May;86(9):3060–3064. doi: 10.1073/pnas.86.9.3060

Protein fragments as probes in the study of protein folding mechanisms: differential effects of dihydrofolate reductase fragments on the refolding of the intact protein.

J G Hall 1, C Frieden 1
PMCID: PMC287064  PMID: 2654934

Abstract

We describe an approach for investigating the protein folding process, using protein fragments as inhibitory probes of the refolding protein. The refolding of Escherichia coli dihydrofolate reductase (EC 1.5.1.3), reversibly unfolded in 7 M urea, was monitored by the reappearance of enzyme activity after diluting the unfolded enzyme into low urea concentrations (less than or equal to 2 M) in the presence of substrates. Of eight protein fragments produced by limited proteolysis of the 159-residue enzyme, three isolated peptides--Ser-49/Glu-90, Ile-91/Glu-154, and Gln-102/Glu-154--were evaluated for their effects on the recovery of the refolding protein's enzymatic activity. By this criterion, 13 microM peptide Gln-102/Glu-154 inhibits the refolding of 0.015 microM enzyme by approximately 80%, while the related peptide, Ile-91/Glu-154, and peptide Ser-49/Glu-90 at the same concentration inhibit the recoverable activity of the refolding enzyme by less than or equal to 20%. None of these three peptides has any significant effect on the activity of the folded enzyme. Our results indicate that peptides may inhibit refolding differentially and that these effects may be extremely sensitive to fragment sequence and composition. We suggest that peptide specificity in the inhibition of protein folding may be exploited as a structural probe of protein folding mechanisms.

Full text

PDF
3061

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baccanari D., Phillips A., Smith S., Sinski D., Burchall J. Purification and properties of Escherichia coli dihydrofolate reductase. Biochemistry. 1975 Dec 2;14(24):5267–5273. doi: 10.1021/bi00695a006. [DOI] [PubMed] [Google Scholar]
  2. Blum A. D., Smallcombe S. H., Baldwin R. L. Nuclear magnetic resonance evidence for a structural intermediate at an early stage in the refolding of ribonuclease A. J Mol Biol. 1978 Jan 25;118(3):305–316. doi: 10.1016/0022-2836(78)90230-9. [DOI] [PubMed] [Google Scholar]
  3. Bolin J. T., Filman D. J., Matthews D. A., Hamlin R. C., Kraut J. Crystal structures of Escherichia coli and Lactobacillus casei dihydrofolate reductase refined at 1.7 A resolution. I. General features and binding of methotrexate. J Biol Chem. 1982 Nov 25;257(22):13650–13662. [PubMed] [Google Scholar]
  4. Brems D. N., Plaisted S. M., Kauffman E. W., Havel H. A. Characterization of an associated equilibrium folding intermediate of bovine growth hormone. Biochemistry. 1986 Oct 21;25(21):6539–6543. doi: 10.1021/bi00369a030. [DOI] [PubMed] [Google Scholar]
  5. Brown J. E., Klee W. A. Helix-coil transition of the isolated amino terminus of ribonuclease. Biochemistry. 1971 Feb 2;10(3):470–476. doi: 10.1021/bi00779a019. [DOI] [PubMed] [Google Scholar]
  6. Burgess A. W., Scheraga H. A. A hypothesis for the pathway of the thermally-induced unfolding of bovine pancreatic ribonuclease. J Theor Biol. 1975 Sep;53(2):403–420. doi: 10.1016/s0022-5193(75)80012-9. [DOI] [PubMed] [Google Scholar]
  7. Drapeau G. R. Cleavage at glutamic acid with staphylococcal protease. Methods Enzymol. 1977;47:189–191. doi: 10.1016/0076-6879(77)47023-x. [DOI] [PubMed] [Google Scholar]
  8. Hsu Chen C. J., Sonenberg M. Conformation studies of biologically active fragments of bovine growth hormone. Biochemistry. 1977 May 17;16(10):2110–2118. doi: 10.1021/bi00629a010. [DOI] [PubMed] [Google Scholar]
  9. Kato I., Anfinsen C. B. On the stabilization of ribonuclease S-protein by ribonuclease S-peptide. J Biol Chem. 1969 Feb 10;244(3):1004–1007. [PubMed] [Google Scholar]
  10. Konishi Y., Scheraga H. A. Regeneration of ribonuclease A from the reduced protein. 2. Conformational analysis of the intermediates by nuclear magnetic resonance spectroscopy. Biochemistry. 1980 Apr 1;19(7):1316–1322. doi: 10.1021/bi00548a009. [DOI] [PubMed] [Google Scholar]
  11. Labhardt A. M., Baldwin R. L. Recombination of S-peptide with S-protein during folding of ribonuclease S. I. Folding pathways of the slow-folding and fast-folding classes of unfolded S-protein. J Mol Biol. 1979 Nov 25;135(1):231–244. doi: 10.1016/0022-2836(79)90349-8. [DOI] [PubMed] [Google Scholar]
  12. Labhardt A. M., Baldwin R. L. Recombination of S-peptide with S-protein during folding of ribonuclease S. II. Kinetic characterization of a stable folding intermediate shown by S-protein at pH 1.7. J Mol Biol. 1979 Nov 25;135(1):245–254. doi: 10.1016/0022-2836(79)90350-4. [DOI] [PubMed] [Google Scholar]
  13. Labhardt A. M. Folding intermediates studied by circular dichroism. Methods Enzymol. 1986;131:126–135. doi: 10.1016/0076-6879(86)31038-3. [DOI] [PubMed] [Google Scholar]
  14. Labhardt A. M. Kinetic circular dichroism shows that the S-peptide alpha-helix of ribonuclease S unfolds fast and refolds slowly. Proc Natl Acad Sci U S A. 1984 Dec;81(24):7674–7678. doi: 10.1073/pnas.81.24.7674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Labhardt A. M. Secondary structure in ribonuclease. I. Equilibrium folding transitions seen by amide circular dichroism. J Mol Biol. 1982 May 15;157(2):331–355. doi: 10.1016/0022-2836(82)90238-8. [DOI] [PubMed] [Google Scholar]
  16. O'Neil K. T., Wolfe H. R., Jr, Erickson-Viitanen S., DeGrado W. F. Fluorescence properties of calmodulin-binding peptides reflect alpha-helical periodicity. Science. 1987 Jun 12;236(4807):1454–1456. doi: 10.1126/science.3589665. [DOI] [PubMed] [Google Scholar]
  17. Penner M. H., Frieden C. Kinetic analysis of the mechanism of Escherichia coli dihydrofolate reductase. J Biol Chem. 1987 Nov 25;262(33):15908–15914. [PubMed] [Google Scholar]
  18. Roder H., Elöve G. A., Englander S. W. Structural characterization of folding intermediates in cytochrome c by H-exchange labelling and proton NMR. Nature. 1988 Oct 20;335(6192):700–704. doi: 10.1038/335700a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Shoemaker K. R., Kim P. S., Brems D. N., Marqusee S., York E. J., Chaiken I. M., Stewart J. M., Baldwin R. L. Nature of the charged-group effect on the stability of the C-peptide helix. Proc Natl Acad Sci U S A. 1985 Apr;82(8):2349–2353. doi: 10.1073/pnas.82.8.2349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Shoemaker K. R., Kim P. S., York E. J., Stewart J. M., Baldwin R. L. Tests of the helix dipole model for stabilization of alpha-helices. Nature. 1987 Apr 9;326(6113):563–567. doi: 10.1038/326563a0. [DOI] [PubMed] [Google Scholar]
  21. Takahashi S., Kontani T., Yoneda M., Ooi T. A circular dichroic spectral study on disulfide-reduced pancreatic ribonuclease A and its renaturation to the active enzyme. J Biochem. 1977 Oct;82(4):1127–1133. doi: 10.1093/oxfordjournals.jbchem.a131785. [DOI] [PubMed] [Google Scholar]
  22. Taniuchi H., Anfinsen C. B. Simultaneous formation of two alternative enzymology active structures by complementation of two overlapping fragments of staphylococcal nuclease. J Biol Chem. 1971 Apr 10;246(7):2291–2301. [PubMed] [Google Scholar]
  23. Taniuchi H., Parker D. S., Bohnert J. L. Study of equilibration of the system involving two alternative, enzymically active complementing structures simultaneously formed from two overlapping fragments of staphylococcal nuclease. J Biol Chem. 1977 Jan 10;252(1):125–140. [PubMed] [Google Scholar]
  24. Touchette N. A., Perry K. M., Matthews C. R. Folding of dihydrofolate reductase from Escherichia coli. Biochemistry. 1986 Sep 23;25(19):5445–5452. doi: 10.1021/bi00367a015. [DOI] [PubMed] [Google Scholar]
  25. Udgaonkar J. B., Baldwin R. L. NMR evidence for an early framework intermediate on the folding pathway of ribonuclease A. Nature. 1988 Oct 20;335(6192):694–699. doi: 10.1038/335694a0. [DOI] [PubMed] [Google Scholar]
  26. Williams J. W., Morrison J. F., Duggleby R. G. Methotrexate, a high-affinity pseudosubstrate of dihydrofolate reductase. Biochemistry. 1979 Jun 12;18(12):2567–2573. doi: 10.1021/bi00579a021. [DOI] [PubMed] [Google Scholar]
  27. Yutani K., Yutani A., Imanishi A., Isemura T. The mechanism of refording of the reduced random coil form of lysozyme. J Biochem. 1968 Oct;64(4):449–455. doi: 10.1093/oxfordjournals.jbchem.a128916. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES