Abstract
Fetal pancreatic beta cells demonstrate a deficient insulin release in response to glucose, but the underlying mechanism at the cellular level is unknown. By using beta cells from 21-day fetal rats we made an attempt to clarify the mechanism(s) behind this reduced glucose response. In addition to measuring insulin release, glucose metabolism, and cellular ATP content, ATP-regulated K+ channels (G channels) and voltage-activated Ca2+ currents were investigated with the patch-clamp technique. It was thus demonstrated that the ATP-regulated K+ channels in fetal beta cells were not sensitive to glucose but otherwise had similar characteristics as those of adult beta cells. Also, the characteristics of the voltage-activated Ca2+ currents were similar in adult and fetal beta cells. However, as judged from measurements of both glucose oxidation and glucose utilization, glucose metabolism was impaired in fetal beta cells. In addition, there was no increase in the ATP content, even when the cells were stimulated for 30 min. It is therefore concluded that the attenuated glucose-induced insulin release in fetal pancreatic beta cells is due to an immature glucose metabolism resulting in impaired regulation of the ATP-sensitive K+ channels. These findings may be relevant to the understanding of the deficient stimulus-secretion coupling associated with non-insulin-dependent diabetes.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abrahamsson H., Berggren P. O., Rorsman P. Direct measurements of increased free cytoplasmic Ca2+ in mouse pancreatic beta-cells following stimulation by hypoglycemic sulfonylureas. FEBS Lett. 1985 Oct 7;190(1):21–24. doi: 10.1016/0014-5793(85)80418-x. [DOI] [PubMed] [Google Scholar]
- Arkhammar P., Nilsson T., Rorsman P., Berggren P. O. Inhibition of ATP-regulated K+ channels precedes depolarization-induced increase in cytoplasmic free Ca2+ concentration in pancreatic beta-cells. J Biol Chem. 1987 Apr 25;262(12):5448–5454. [PubMed] [Google Scholar]
- Ashcroft F. M., Harrison D. E., Ashcroft S. J. Glucose induces closure of single potassium channels in isolated rat pancreatic beta-cells. 1984 Nov 29-Dec 5Nature. 312(5993):446–448. doi: 10.1038/312446a0. [DOI] [PubMed] [Google Scholar]
- Asplund K. Dynamics of insulin release from the foetal and neonatal rat pancreas. Eur J Clin Invest. 1973 Jul;3(4):338–344. doi: 10.1111/j.1365-2362.1973.tb00360.x. [DOI] [PubMed] [Google Scholar]
- Asplund K. Effects of intermittent glucose infusions in pregnant rats on the functional development of the foetal pancreatic B-cells. J Endocrinol. 1973 Nov;59(2):285–293. doi: 10.1677/joe.0.0590285. [DOI] [PubMed] [Google Scholar]
- Asplund K., Freinkel N. Phosphate metabolism and glucose-initiated efflux of phosphate ions in islets of fetal pancreas. Diabetes. 1978 Jun;27(6):611–619. doi: 10.2337/diab.27.6.611. [DOI] [PubMed] [Google Scholar]
- Asplund K., Westman S., Hellerström C. Glucose stimulation of insulin secretion from the isolated pancreas of foetal and newborn rats. Diabetologia. 1969 Aug;5(4):260–262. doi: 10.1007/BF01212095. [DOI] [PubMed] [Google Scholar]
- Cook D. L., Hales C. N. Intracellular ATP directly blocks K+ channels in pancreatic B-cells. Nature. 1984 Sep 20;311(5983):271–273. doi: 10.1038/311271a0. [DOI] [PubMed] [Google Scholar]
- Dunne M. J., Petersen O. H. Intracellular ADP activates K+ channels that are inhibited by ATP in an insulin-secreting cell line. FEBS Lett. 1986 Nov 10;208(1):59–62. doi: 10.1016/0014-5793(86)81532-0. [DOI] [PubMed] [Google Scholar]
- Eizirik D. L., Sandler S., Sener A., Malaisse W. J. Defective catabolism of D-glucose and L-glutamine in mouse pancreatic islets maintained in culture after streptozotocin exposure. Endocrinology. 1988 Aug;123(2):1001–1007. doi: 10.1210/endo-123-2-1001. [DOI] [PubMed] [Google Scholar]
- Espinosa de los Monteros, Driscoll S. G., Steinke J. Insulin release from isolated human fetal pancreatic islets. Science. 1970 May 29;168(3935):1111–1112. doi: 10.1126/science.168.3935.1111. [DOI] [PubMed] [Google Scholar]
- Freinkel N., Lewis N. J., Johnson R., Swenne I., Bone A., Hellerström C. Differential effects of age versus glycemic stimulation on the maturation of insulin stimulus-secretion coupling during culture of fetal rat islets. Diabetes. 1984 Nov;33(11):1028–1038. doi: 10.2337/diab.33.11.1028. [DOI] [PubMed] [Google Scholar]
- Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
- Heinze E., Steinke J. Insulin secretion during development: response of isolated pancreatic islets of fetal, newborn and adult rats to theophylline and arginine. Horm Metab Res. 1972 Jul;4(4):234–236. doi: 10.1055/s-0028-1094056. [DOI] [PubMed] [Google Scholar]
- Hellerström C. H., Lewis N. J., Borg H., Johnson R., Fréinkel N. Method for large-scale isolation of pancreatic islets by tissue culture of fetal rat pancreas. Diabetes. 1979 Aug;28(8):769–776. doi: 10.2337/diab.28.8.769. [DOI] [PubMed] [Google Scholar]
- Hellman B. The significance of calcium for glucose stimulation of insulin release. Endocrinology. 1975 Aug;97(2):392–398. doi: 10.1210/endo-97-2-392. [DOI] [PubMed] [Google Scholar]
- Hole R. L., Pian-Smith M. C., Sharp G. W. Development of the biphasic response to glucose in fetal and neonatal rat pancreas. Am J Physiol. 1988 Feb;254(2 Pt 1):E167–E174. doi: 10.1152/ajpendo.1988.254.2.E167. [DOI] [PubMed] [Google Scholar]
- Kakei M., Kelly R. P., Ashcroft S. J., Ashcroft F. M. The ATP-sensitivity of K+ channels in rat pancreatic B-cells is modulated by ADP. FEBS Lett. 1986 Nov 10;208(1):63–66. doi: 10.1016/0014-5793(86)81533-2. [DOI] [PubMed] [Google Scholar]
- Lernmark A., Wenngren B. I. Insulin and glucagon release from the isolated pancreas of foetal and newborn mice. J Embryol Exp Morphol. 1972 Dec;28(3):607–614. [PubMed] [Google Scholar]
- Meissner H. P., Henquin J. C., Preissler M. Potassium dependence of the membrane potential of pancreatic B-cells. FEBS Lett. 1978 Oct 1;94(1):87–89. doi: 10.1016/0014-5793(78)80912-0. [DOI] [PubMed] [Google Scholar]
- Milner R. D., Ashworth M. A., Barson A. J. Insulin release from human foetal pancreas in vitro. Horm Metab Res. 1971 Sep;3(5):353–354. doi: 10.1055/s-0028-1096789. [DOI] [PubMed] [Google Scholar]
- Nowycky M. C., Fox A. P., Tsien R. W. Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature. 1985 Aug 1;316(6027):440–443. doi: 10.1038/316440a0. [DOI] [PubMed] [Google Scholar]
- Pipeleers D., in't Veld P. I., Maes E., Van De Winkel M. Glucose-induced insulin release depends on functional cooperation between islet cells. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7322–7325. doi: 10.1073/pnas.79.23.7322. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Plant T. D. Properties and calcium-dependent inactivation of calcium currents in cultured mouse pancreatic B-cells. J Physiol. 1988 Oct;404:731–747. doi: 10.1113/jphysiol.1988.sp017316. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Portha B., Giroix M. H., Serradas P., Welsh N., Hellerström C., Sener A., Malaisse W. J. Insulin production and glucose metabolism in isolated pancreatic islets of rats with NIDDM. Diabetes. 1988 Sep;37(9):1226–1233. doi: 10.2337/diab.37.9.1226. [DOI] [PubMed] [Google Scholar]
- Rorsman P., Ashcroft F. M., Trube G. Single Ca channel currents in mouse pancreatic B-cells. Pflugers Arch. 1988 Oct;412(6):597–603. doi: 10.1007/BF00583760. [DOI] [PubMed] [Google Scholar]
- Rorsman P., Trube G. Calcium and delayed potassium currents in mouse pancreatic beta-cells under voltage-clamp conditions. J Physiol. 1986 May;374:531–550. doi: 10.1113/jphysiol.1986.sp016096. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rorsman P., Trube G. Glucose dependent K+-channels in pancreatic beta-cells are regulated by intracellular ATP. Pflugers Arch. 1985 Dec;405(4):305–309. doi: 10.1007/BF00595682. [DOI] [PubMed] [Google Scholar]
- Sener A., Malaisse W. J. Stimulation by D-glucose of mitochondrial oxidative events in islet cells. Biochem J. 1987 Aug 15;246(1):89–95. doi: 10.1042/bj2460089. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sodoyez-Goffaux F., Sodoyez J. C., Foà P. P. Effects of gestational age, birth and feeding on the insulinogenic response to glucose and tolbutamide by fetal and newborn rat pancreas. Diabetes. 1971 Sep;20(9):586–591. doi: 10.2337/diab.20.9.586. [DOI] [PubMed] [Google Scholar]
- Sturgess N. C., Ashford M. L., Cook D. L., Hales C. N. The sulphonylurea receptor may be an ATP-sensitive potassium channel. Lancet. 1985 Aug 31;2(8453):474–475. doi: 10.1016/s0140-6736(85)90403-9. [DOI] [PubMed] [Google Scholar]
- Trube G., Rorsman P., Ohno-Shosaku T. Opposite effects of tolbutamide and diazoxide on the ATP-dependent K+ channel in mouse pancreatic beta-cells. Pflugers Arch. 1986 Nov;407(5):493–499. doi: 10.1007/BF00657506. [DOI] [PubMed] [Google Scholar]
- Vecchio D., Luyckx A., Renold A. E. Culture d'organe de pancréas foetal de rat. II. Effets du glucose, d'un sulfamidé hypoglycémiant et du glucagon sur la libération de l'insuline. Helv Physiol Pharmacol Acta. 1967;25(2):134–146. [PubMed] [Google Scholar]