Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1993 Nov;92(5):2215–2223. doi: 10.1172/JCI116824

Transport of beta-lactam antibiotics in kidney brush border membrane. Determinants of their affinity for the oligopeptide/H+ symporter.

H Daniel 1, S A Adibi 1
PMCID: PMC288401  PMID: 8227336

Abstract

This study was designed to determine whether beta-lactam antibiotics (cephalosporins and penicillins) are all substrates for the renal oligopeptide/H+ symporter and, if so, whether the transport system discriminates among the numerous beta-lactam antibiotics. We used [3H]glycylglutamine, [3H]cephalexin, and [3H]-ampicillin as probes for the transport of oligopeptides, cephalosporins, and penicillins in kidney brush border membrane vesicles, respectively. Among the beta-lactam antibiotics, only those with an alpha-amino group in the phenylacetamido moiety were found to interact with the oligopeptide/H+ symporter. Aminocephalosporins displayed high affinities (KiS generally < 250 microM), whereas aminopenicillins displayed low affinities (Ki 0.78-3.03 mM). These differences in affinities appeared to be a consequence of conformational features of the substrates, especially the sterical location of the carboxy group. The affinities of aminolactams for the oligopeptide/H+ symporter were, furthermore, related to the hydrophobicity of the phenylglycyl chains and the substituents attached to the thiazolidine and dihydrothiazine ring. In sharp contrast to the uptake of [3H]glycylglutamine and [3H]cephalexin, the uptake of [3H]ampicillin was not dependent on a pH gradient and was inhibited by various beta-lactam antibiotics, whether or not they contained an alpha-amino group. Our data suggest that: (a) the transport of aminocephalosporins is largely mediated by the oligopeptide/H+ symporter, which is highly influenced by the substrate structure; and (b) penicillins are transported by another system, which is less discriminative with respect to substrate structure.

Full text

PDF
2223

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bergan T. Pharmacokinetics of beta-lactam antibiotics. Scand J Infect Dis Suppl. 1984;42:83–98. [PubMed] [Google Scholar]
  2. Bins J. W., Mattie H. Saturation of the tubular excretion of beta-lactam antibiotics. Br J Clin Pharmacol. 1988 Jan;25(1):41–50. doi: 10.1111/j.1365-2125.1988.tb03280.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Daniel H., Morse E. L., Adibi S. A. Determinants of substrate affinity for the oligopeptide/H+ symporter in the renal brush border membrane. J Biol Chem. 1992 May 15;267(14):9565–9573. [PubMed] [Google Scholar]
  4. Daniel H., Morse E. L., Adibi S. A. The high and low affinity transport systems for dipeptides in kidney brush border membrane respond differently to alterations in pH gradient and membrane potential. J Biol Chem. 1991 Oct 25;266(30):19917–19924. [PubMed] [Google Scholar]
  5. Donowitz G. R., Mandell G. L. Drug therapy. Beta-lactam antibiotics (2). N Engl J Med. 1988 Feb 25;318(8):490–500. doi: 10.1056/NEJM198802253180806. [DOI] [PubMed] [Google Scholar]
  6. Elks J. Cephalosporins under development. Drugs. 1987;34 (Suppl 2):247–252. doi: 10.2165/00003495-198700342-00018. [DOI] [PubMed] [Google Scholar]
  7. Hansch C., Leo A., Unger S. H., Kim K. H., Nikaitani D., Lien E. J. "Aromatic" substituent constants for structure-activity correlations. J Med Chem. 1973 Nov;16(11):1207–1216. doi: 10.1021/jm00269a003. [DOI] [PubMed] [Google Scholar]
  8. Inui K., Okano T., Takano M., Saito H., Hori R. Carrier-mediated transport of cephalexin via the dipeptide transport system in rat renal brush-border membrane vesicles. Biochim Biophys Acta. 1984 Jan 25;769(2):449–454. doi: 10.1016/0005-2736(84)90329-8. [DOI] [PubMed] [Google Scholar]
  9. Kramer W., Dechent C., Girbig F., Gutjahr U., Neubauer H. Intestinal uptake of dipeptides and beta-lactam antibiotics. I. The intestinal uptake system for dipeptides and beta-lactam antibiotics is not part of a brush border membrane peptidase. Biochim Biophys Acta. 1990 Nov 30;1030(1):41–49. doi: 10.1016/0005-2736(90)90236-h. [DOI] [PubMed] [Google Scholar]
  10. Kramer W., Girbig F., Gutjahr U., Kowalewski S., Adam F., Schiebler W. Intestinal absorption of beta-lactam antibiotics and oligopeptides. Functional and stereospecific reconstitution of the oligopeptide transport system from rabbit small intestine. Eur J Biochem. 1992 Mar 1;204(2):923–930. doi: 10.1111/j.1432-1033.1992.tb16713.x. [DOI] [PubMed] [Google Scholar]
  11. Kramer W., Girbig F., Gutjahr U., Leipe I. Application of high-performance liquid chromatography to the purification of the putative intestinal peptide transporter. J Chromatogr. 1990 Nov 23;521(2):199–210. doi: 10.1016/0021-9673(90)85044-v. [DOI] [PubMed] [Google Scholar]
  12. Kramer W., Leipe I., Petzoldt E., Girbig F. Characterization of the transport system for beta-lactam antibiotics and dipeptides in rat renal brush-border membrane vesicles by photoaffinity labeling. Biochim Biophys Acta. 1988 Mar 22;939(1):167–172. doi: 10.1016/0005-2736(88)90059-4. [DOI] [PubMed] [Google Scholar]
  13. Miyamoto Y., Tiruppathi C., Ganapathy V., Leibach F. H. Multiple transport systems for organic cations in renal brush-border membrane vesicles. Am J Physiol. 1989 Apr;256(4 Pt 2):F540–F548. doi: 10.1152/ajprenal.1989.256.4.F540. [DOI] [PubMed] [Google Scholar]
  14. Silbernagl S., Ganapathy V., Leibach F. H. H+ gradient-driven dipeptide reabsorption in proximal tubule of rat kidney. Studies in vivo and in vitro. Am J Physiol. 1987 Sep;253(3 Pt 2):F448–F457. doi: 10.1152/ajprenal.1987.253.3.F448. [DOI] [PubMed] [Google Scholar]
  15. Skopicki H. A., Fisher K., Zikos D., Bloch R., Flouret G., Peterson D. R. Multiple carriers for dipeptide transport: carrier-mediated transport of glycyl-L-proline in renal BBMV. Am J Physiol. 1991 Oct;261(4 Pt 2):F670–F678. doi: 10.1152/ajprenal.1991.261.4.F670. [DOI] [PubMed] [Google Scholar]
  16. Tsuji A., Terasaki T., Tamai I., Takeda K. In vivo evidence for carrier-mediated uptake of beta-lactam antibiotics through organic anion transport systems in rat kidney and liver. J Pharmacol Exp Ther. 1990 Apr;253(1):315–320. [PubMed] [Google Scholar]
  17. Ullrich K. J., Rumrich G., Klöss S. Contraluminal organic anion and cation transport in the proximal renal tubule: V. Interaction with sulfamoyl- and phenoxy diuretics, and with beta-lactam antibiotics. Kidney Int. 1989 Jul;36(1):78–88. doi: 10.1038/ki.1989.164. [DOI] [PubMed] [Google Scholar]
  18. Williams P. D., Hitchcock M. J., Hottendorf G. H. Effect of cephalosporins on organic ion transport in renal membrane vesicles from rat and rabbit kidney cortex. Res Commun Chem Pathol Pharmacol. 1985 Mar;47(3):357–371. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES