Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1993 Dec;92(6):2660–2666. doi: 10.1172/JCI116882

Mitochondrial myopathy with succinate dehydrogenase and aconitase deficiency. Abnormalities of several iron-sulfur proteins.

R E Hall 1, K G Henriksson 1, S F Lewis 1, R G Haller 1, N G Kennaway 1
PMCID: PMC288463  PMID: 8254022

Abstract

Recently, we described a patient with severe exercise intolerance and episodic myoglobinuria, associated with marked impairment of succinate oxidation and deficient activity of succinate dehydrogenase and aconitase in muscle mitochondria (1). We now report additional enzymatic and immunological characterization of mitochondria. In addition to severe deficiency of complex II, manifested by reduction of succinate dehydrogenase and succinate:coenzyme Q oxidoreductase activities to 12 and 22% of normal, respectively, complex III activity was reduced to 37% and rhodanese to 48% of normal. Furthermore, although complex I activity was not measured, immunoblot analysis of complex I showed deficiency of the 39-, 24-, 13-, and 9-kD peptides with lesser reductions of the 51- and 18-kD peptides. Immunoblots of complex III showed markedly reduced levels of the mature Rieske protein in mitochondria and elevated levels of its precursor in the cytosol, suggesting deficient uptake into mitochondria. Immunoreactive aconitase was also low. These data, together with the previous documentation of low amounts of the 30-kD iron-sulfur protein and the 13.5-kD subunit of complex II, compared to near normal levels of the 70-kD protein suggest a more generalized abnormality of the synthesis, import, processing, or assembly of a group of proteins containing iron-sulfur clusters.

Full text

PDF
2664

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ackrell B. A., Maguire J. J., Dallman P. R., Kearney E. B. Effect of iron deficiency on succinate- and NADH-ubiquinone oxidoreductases in skeletal muscle mitochondria. J Biol Chem. 1984 Aug 25;259(16):10053–10059. [PubMed] [Google Scholar]
  2. Aisen P., Cohen G., Kang J. O. Iron toxicosis. Int Rev Exp Pathol. 1990;31:1–46. doi: 10.1016/b978-0-12-364931-7.50006-9. [DOI] [PubMed] [Google Scholar]
  3. Baker K. P., Schatz G. Mitochondrial proteins essential for viability mediate protein import into yeast mitochondria. Nature. 1991 Jan 17;349(6306):205–208. doi: 10.1038/349205a0. [DOI] [PubMed] [Google Scholar]
  4. Barnes R., Connelly J. L., Jones O. T. The utilization of iron and its complexes by mammalian mitochondria. Biochem J. 1972 Aug;128(5):1043–1055. doi: 10.1042/bj1281043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Beckmann J. D., Frerman F. E. Electron-transfer flavoprotein-ubiquinone oxidoreductase from pig liver: purification and molecular, redox, and catalytic properties. Biochemistry. 1985 Jul 16;24(15):3913–3921. doi: 10.1021/bi00336a016. [DOI] [PubMed] [Google Scholar]
  6. Beckmann J. D., Ljungdahl P. O., Lopez J. L., Trumpower B. L. Isolation and characterization of the nuclear gene encoding the Rieske iron-sulfur protein (RIP1) from Saccharomyces cerevisiae. J Biol Chem. 1987 Jun 25;262(18):8901–8909. [PubMed] [Google Scholar]
  7. Beinert H., Ackrell B. A., Vinogradov A. D., Kearney E. B., Singer T. P. Interrelations of reconstitution activity, reactions with electron acceptors, and iron-sulfur centers in succinate dehydrogenase. Arch Biochem Biophys. 1977 Jul;182(1):95–106. doi: 10.1016/0003-9861(77)90287-9. [DOI] [PubMed] [Google Scholar]
  8. Beinert H., Kennedy M. C. 19th Sir Hans Krebs lecture. Engineering of protein bound iron-sulfur clusters. A tool for the study of protein and cluster chemistry and mechanism of iron-sulfur enzymes. Eur J Biochem. 1989 Dec 8;186(1-2):5–15. doi: 10.1111/j.1432-1033.1989.tb15170.x. [DOI] [PubMed] [Google Scholar]
  9. Beinert H. Recent developments in the field of iron-sulfur proteins. FASEB J. 1990 May;4(8):2483–2491. doi: 10.1096/fasebj.4.8.2185975. [DOI] [PubMed] [Google Scholar]
  10. Birch-Machin M. A., Shepherd I. M., Watmough N. J., Sherratt H. S., Bartlett K., Darley-Usmar V. M., Milligan D. W., Welch R. J., Aynsley-Green A., Turnbull D. M. Fatal lactic acidosis in infancy with a defect of complex III of the respiratory chain. Pediatr Res. 1989 May;25(5):553–559. doi: 10.1203/00006450-198905000-00025. [DOI] [PubMed] [Google Scholar]
  11. Bonomi F., Pagani S., Cerletti P., Cannella C. Rhodanese-Mediated sulfur transfer to succinate dehydrogenase. Eur J Biochem. 1977 Jan 3;72(1):17–24. doi: 10.1111/j.1432-1033.1977.tb11219.x. [DOI] [PubMed] [Google Scholar]
  12. Borchart U., Machleidt W., Schägger H., Link T. A., von Jagow G. Isolation and amino acid sequence of the 8 kDa DCCD-binding protein of beef heart ubiquinol:cytochrome c reductase. FEBS Lett. 1985 Oct 21;191(1):125–130. doi: 10.1016/0014-5793(85)81007-3. [DOI] [PubMed] [Google Scholar]
  13. Brandt U., Schägger H., von Jagow G. Characterisation of binding of the methoxyacrylate inhibitors to mitochondrial cytochrome c reductase. Eur J Biochem. 1988 May 2;173(3):499–506. doi: 10.1111/j.1432-1033.1988.tb14026.x. [DOI] [PubMed] [Google Scholar]
  14. Brandt U., Yu L., Yu C. A., Trumpower B. L. The mitochondrial targeting presequence of the Rieske iron-sulfur protein is processed in a single step after insertion into the cytochrome bc1 complex in mammals and retained as a subunit in the complex. J Biol Chem. 1993 Apr 25;268(12):8387–8390. [PubMed] [Google Scholar]
  15. Cartier L. J., Ohira Y., Chen M., Cuddihee R. W., Holloszy J. O. Perturbation of mitochondrial composition in muscle by iron deficiency. Implications regarding regulation of mitochondrial assembly. J Biol Chem. 1986 Oct 15;261(29):13827–13832. [PubMed] [Google Scholar]
  16. Clarkson G. H., King T. E., Lindsay J. G. Biosynthesis and processing of the large and small subunits of succinate dehydrogenase in cultured mammalian cells. Biochem J. 1987 May 15;244(1):15–20. doi: 10.1042/bj2440015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Darley-Usmar V. M., Kennaway N. G., Buist N. R., Capaldi R. A. Deficiency in ubiquinone cytochrome c reductase in a patient with mitochondrial myopathy and lactic acidosis. Proc Natl Acad Sci U S A. 1983 Aug;80(16):5103–5106. doi: 10.1073/pnas.80.16.5103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Desnuelle C., Birch-Machin M., Pellissier J. F., Bindoff L. A., Ackrell B. A., Turnbull D. M. Multiple defects of the respiratory chain including complex II in a family with myopathy and encephalopathy. Biochem Biophys Res Commun. 1989 Sep 15;163(2):695–700. doi: 10.1016/0006-291x(89)92279-1. [DOI] [PubMed] [Google Scholar]
  19. Evans T. C., Mackler B. Effect of iron deficiency on energy conservation in rat liver and skeletal muscle submitochondrial particles. Biochem Med. 1985 Aug;34(1):93–99. doi: 10.1016/0006-2944(85)90065-1. [DOI] [PubMed] [Google Scholar]
  20. Fischer J. C., Ruitenbeek W., Berden J. A., Trijbels J. M., Veerkamp J. H., Stadhouders A. M., Sengers R. C., Janssen A. J. Differential investigation of the capacity of succinate oxidation in human skeletal muscle. Clin Chim Acta. 1985 Nov 29;153(1):23–36. doi: 10.1016/0009-8981(85)90135-4. [DOI] [PubMed] [Google Scholar]
  21. Fu W., Japa S., Beattie D. S. Import of the iron-sulfur protein of the cytochrome b.c1 complex into yeast mitochondria. J Biol Chem. 1990 Sep 25;265(27):16541–16547. [PubMed] [Google Scholar]
  22. Ganote C. E., Nahara G. Acute ferrous sulfate hepatotoxicity in rats. An electron microscopic and biochemical study. Lab Invest. 1973 Apr;28(4):426–436. [PubMed] [Google Scholar]
  23. Gibb G. M., Ragan C. I. Identification of the subunits of bovine NADH dehydrogenase which are encoded by the mitochondrial genome. Biochem J. 1990 Feb 1;265(3):903–906. doi: 10.1042/bj2650903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Glick B., Schatz G. Import of proteins into mitochondria. Annu Rev Genet. 1991;25:21–44. doi: 10.1146/annurev.ge.25.120191.000321. [DOI] [PubMed] [Google Scholar]
  25. González-Halphen D., Lindorfer M. A., Capaldi R. A. Subunit arrangement in beef heart complex III. Biochemistry. 1988 Sep 6;27(18):7021–7031. doi: 10.1021/bi00418a053. [DOI] [PubMed] [Google Scholar]
  26. Goto Y., Nonaka I., Horai S. A mutation in the tRNA(Leu)(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature. 1990 Dec 13;348(6302):651–653. doi: 10.1038/348651a0. [DOI] [PubMed] [Google Scholar]
  27. Graham L. A., Trumpower B. L. Mutational analysis of the mitochondrial Rieske iron-sulfur protein of Saccharomyces cerevisiae. III. Import, protease processing, and assembly into the cytochrome bc1 complex of iron-sulfur protein lacking the iron-sulfur cluster. J Biol Chem. 1991 Nov 25;266(33):22485–22492. [PubMed] [Google Scholar]
  28. Hall R. E., Hare J. F. Respiratory chain-linked NADH dehydrogenase. Mechanisms of assembly. J Biol Chem. 1990 Sep 25;265(27):16484–16490. [PubMed] [Google Scholar]
  29. Haller R. G., Henriksson K. G., Jorfeldt L., Hultman E., Wibom R., Sahlin K., Areskog N. H., Gunder M., Ayyad K., Blomqvist C. G. Deficiency of skeletal muscle succinate dehydrogenase and aconitase. Pathophysiology of exercise in a novel human muscle oxidative defect. J Clin Invest. 1991 Oct;88(4):1197–1206. doi: 10.1172/JCI115422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Han A. L., Yagi T., Hatefi Y. Studies on the structure of NADH: ubiquinone oxidoreductase complex: topography of the subunits of the iron-sulfur protein component. Arch Biochem Biophys. 1989 Nov 15;275(1):166–173. doi: 10.1016/0003-9861(89)90360-3. [DOI] [PubMed] [Google Scholar]
  31. Hartl F. U., Neupert W. Protein sorting to mitochondria: evolutionary conservations of folding and assembly. Science. 1990 Feb 23;247(4945):930–938. doi: 10.1126/science.2406905. [DOI] [PubMed] [Google Scholar]
  32. Hartl F. U., Pfanner N., Nicholson D. W., Neupert W. Mitochondrial protein import. Biochim Biophys Acta. 1989 Jan 18;988(1):1–45. doi: 10.1016/0304-4157(89)90002-6. [DOI] [PubMed] [Google Scholar]
  33. Hartl F. U., Schmidt B., Wachter E., Weiss H., Neupert W. Transport into mitochondria and intramitochondrial sorting of the Fe/S protein of ubiquinol-cytochrome c reductase. Cell. 1986 Dec 26;47(6):939–951. doi: 10.1016/0092-8674(86)90809-3. [DOI] [PubMed] [Google Scholar]
  34. Hendrick J. P., Hodges P. E., Rosenberg L. E. Survey of amino-terminal proteolytic cleavage sites in mitochondrial precursor proteins: leader peptides cleaved by two matrix proteases share a three-amino acid motif. Proc Natl Acad Sci U S A. 1989 Jun;86(11):4056–4060. doi: 10.1073/pnas.86.11.4056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Holt I. J., Harding A. E., Cooper J. M., Schapira A. H., Toscano A., Clark J. B., Morgan-Hughes J. A. Mitochondrial myopathies: clinical and biochemical features of 30 patients with major deletions of muscle mitochondrial DNA. Ann Neurol. 1989 Dec;26(6):699–708. doi: 10.1002/ana.410260603. [DOI] [PubMed] [Google Scholar]
  36. Johnson M. K., Morningstar J. E., Bennett D. E., Ackrell B. A., Kearney E. B. Magnetic circular dichroism studies of succinate dehydrogenase. Evidence for [2Fe-2S], [3Fe-xS], and [4Fe-4S] centers in reconstitutively active enzyme. J Biol Chem. 1985 Jun 25;260(12):7368–7378. [PubMed] [Google Scholar]
  37. Kennedy M. C., Emptage M. H., Dreyer J. L., Beinert H. The role of iron in the activation-inactivation of aconitase. J Biol Chem. 1983 Sep 25;258(18):11098–11105. [PubMed] [Google Scholar]
  38. Kennedy M. C., Mende-Mueller L., Blondin G. A., Beinert H. Purification and characterization of cytosolic aconitase from beef liver and its relationship to the iron-responsive element binding protein. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11730–11734. doi: 10.1073/pnas.89.24.11730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Kleiber J., Kalousek F., Swaroop M., Rosenberg L. E. The general mitochondrial matrix processing protease from rat liver: structural characterization of the catalytic subunit. Proc Natl Acad Sci U S A. 1990 Oct;87(20):7978–7982. doi: 10.1073/pnas.87.20.7978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. LARSSON L. E., LINDERHOLM H., MUELLER R., RINGQVIST T., SOERNAES R. HEREDITARY METABOLIC MYOPATHY WITH PAROXYSMAL MYOGLOBINURIA DUE TO ABNORMAL GLYCOLYSIS. J Neurol Neurosurg Psychiatry. 1964 Oct;27:361–380. doi: 10.1136/jnnp.27.5.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  42. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  43. Linderholm H., Essén-Gustavsson B., Thornell L. E. Low succinate dehydrogenase (SDH) activity in a patient with a hereditary myopathy with paroxysmal myoglobinuria. J Intern Med. 1990 Jul;228(1):43–52. doi: 10.1111/j.1365-2796.1990.tb00191.x. [DOI] [PubMed] [Google Scholar]
  44. Lombardo A., Scheffler I. E. Isolation and characterization of a Saccharomyces cerevisiae mutant with a disrupted gene for the IP subunit of succinate dehydrogenase. J Biol Chem. 1989 Nov 15;264(32):18874–18877. [PubMed] [Google Scholar]
  45. Maguire J. J., Davies K. J., Dallman P. R., Packer L. Effects of dietary iron deficiency of iron-sulfur proteins and bioenergetic functions of skeletal muscle mitochondria. Biochim Biophys Acta. 1982 Feb 17;679(2):210–220. doi: 10.1016/0005-2728(82)90292-4. [DOI] [PubMed] [Google Scholar]
  46. Moreadith R. W., Batshaw M. L., Ohnishi T., Kerr D., Knox B., Jackson D., Hruban R., Olson J., Reynafarje B., Lehninger A. L. Deficiency of the iron-sulfur clusters of mitochondrial reduced nicotinamide-adenine dinucleotide-ubiquinone oxidoreductase (complex I) in an infant with congenital lactic acidosis. J Clin Invest. 1984 Sep;74(3):685–697. doi: 10.1172/JCI111484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Ogata K., Volini M. Mitochondrial rhodanese: membrane-bound and complexed activity. J Biol Chem. 1990 May 15;265(14):8087–8093. [PubMed] [Google Scholar]
  48. Pagani S., Galante Y. M. Interaction of rhodanese with mitochondrial NADH dehydrogenase. Biochim Biophys Acta. 1983 Jan 26;742(2):278–284. doi: 10.1016/0167-4838(83)90312-6. [DOI] [PubMed] [Google Scholar]
  49. Paudel H. K., Yu L., Yu C. A. Involvement of a histidine residue in the interaction between membrane-anchoring protein (QPs) and succinate dehydrogenase in mitochondrial succinate-ubiquinone reductase. Biochim Biophys Acta. 1991 Jan 22;1056(2):159–165. doi: 10.1016/s0005-2728(05)80282-8. [DOI] [PubMed] [Google Scholar]
  50. Ragan C. I., Galante Y. M., Hatefi Y. Purification of three iron-sulfur proteins from the iron-protein fragment of mitochondrial NADH-ubiquinone oxidoreductase. Biochemistry. 1982 May 11;21(10):2518–2524. doi: 10.1021/bi00539a035. [DOI] [PubMed] [Google Scholar]
  51. Rivner M. H., Shamsnia M., Swift T. R., Trefz J., Roesel R. A., Carter A. L., Yanamura W., Hommes F. A. Kearns-Sayre syndrome and complex II deficiency. Neurology. 1989 May;39(5):693–696. doi: 10.1212/wnl.39.5.693. [DOI] [PubMed] [Google Scholar]
  52. Robotham J. L., Lietman P. S. Acute iron poisoning. A review. Am J Dis Child. 1980 Sep;134(9):875–879. doi: 10.1001/archpedi.1980.02130210059016. [DOI] [PubMed] [Google Scholar]
  53. Robotham J. L., Troxler R. F., Lietman P. S. Letter: Iron poisoning: another energy crisis. Lancet. 1974 Sep 14;2(7881):664–665. doi: 10.1016/s0140-6736(74)91999-0. [DOI] [PubMed] [Google Scholar]
  54. Rosenbaum L. C., Nilaver G., Hagman H. M., Neuwelt E. A. Detection of low-molecular-weight polypeptides on nitrocellulose with monoclonal antibodies. Anal Biochem. 1989 Dec;183(2):250–257. doi: 10.1016/0003-2697(89)90475-2. [DOI] [PubMed] [Google Scholar]
  55. Rouault T. A., Stout C. D., Kaptain S., Harford J. B., Klausner R. D. Structural relationship between an iron-regulated RNA-binding protein (IRE-BP) and aconitase: functional implications. Cell. 1991 Mar 8;64(5):881–883. doi: 10.1016/0092-8674(91)90312-m. [DOI] [PubMed] [Google Scholar]
  56. Schapira A. H., Cooper J. M., Morgan-Hughes J. A., Landon D. N., Clark J. B. Mitochondrial myopathy with a defect of mitochondrial-protein transport. N Engl J Med. 1990 Jul 5;323(1):37–42. doi: 10.1056/NEJM199007053230107. [DOI] [PubMed] [Google Scholar]
  57. Shoffner J. M., 4th, Wallace D. C. Oxidative phosphorylation diseases. Disorders of two genomes. Adv Hum Genet. 1990;19:267–330. [PubMed] [Google Scholar]
  58. Walker J. E., Arizmendi J. M., Dupuis A., Fearnley I. M., Finel M., Medd S. M., Pilkington S. J., Runswick M. J., Skehel J. M. Sequences of 20 subunits of NADH:ubiquinone oxidoreductase from bovine heart mitochondria. Application of a novel strategy for sequencing proteins using the polymerase chain reaction. J Mol Biol. 1992 Aug 20;226(4):1051–1072. doi: 10.1016/0022-2836(92)91052-q. [DOI] [PubMed] [Google Scholar]
  59. Walker J. E. The NADH:ubiquinone oxidoreductase (complex I) of respiratory chains. Q Rev Biophys. 1992 Aug;25(3):253–324. doi: 10.1017/s003358350000425x. [DOI] [PubMed] [Google Scholar]
  60. Wallace D. C. Diseases of the mitochondrial DNA. Annu Rev Biochem. 1992;61:1175–1212. doi: 10.1146/annurev.bi.61.070192.005523. [DOI] [PubMed] [Google Scholar]
  61. Wallace D. C. Mitochondrial genetics: a paradigm for aging and degenerative diseases? Science. 1992 May 1;256(5057):628–632. doi: 10.1126/science.1533953. [DOI] [PubMed] [Google Scholar]
  62. Weaver J., Zhan H., Pollack S. Mitochondria have Fe(III) receptors. Biochem J. 1990 Jan 15;265(2):415–419. doi: 10.1042/bj2650415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Willis W. T., Brooks G. A., Henderson S. A., Dallman P. R. Effects of iron deficiency and training on mitochondrial enzymes in skeletal muscle. J Appl Physiol (1985) 1987 Jun;62(6):2442–2446. doi: 10.1152/jappl.1987.62.6.2442. [DOI] [PubMed] [Google Scholar]
  64. Zheng L., Andrews P. C., Hermodson M. A., Dixon J. E., Zalkin H. Cloning and structural characterization of porcine heart aconitase. J Biol Chem. 1990 Feb 15;265(5):2814–2821. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES