Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1992 Apr;66(4):2111–2117. doi: 10.1128/jvi.66.4.2111-2117.1992

Effects of hydrostatic pressure on a membrane-enveloped virus: high immunogenicity of the pressure-inactivated virus.

J L Silva 1, P Luan 1, M Glaser 1, E W Voss 1, G Weber 1
PMCID: PMC289002  PMID: 1312621

Abstract

A new approach to the preparation of antiviral vaccines relying on the inactivation of the virus particle by hydrostatic pressure is described. The enveloped virus vesicular stomatitis virus was utilized as a model; a pressure of 260 MPa applied for 12 h reduced infectivity by a factor of 10(4), and the antibodies against pressurized material were as effective as those against the intact virus when measured by their neutralization titer. Fluorescence measurements indicate that application of pressure results in perturbations of the particle interactions that permit binding of specific molecular probes. Electron microscopy showed that the membrane of the pressurized virus was partially preserved, presenting the spike pattern of the membrane G protein. Unlike the icosahedral viruses, dissociation into smaller particles was not observed, but a constant change in the morphology was the presence of a bulge in the surface of the pressurized virus, indicating a displacement of the capsid subunits, retained under the lipid and protein membrane.

Full text

PDF
2112

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown F., Cartwright B. The antigens of vesicular stomatitis virus. II. The presence of two low molecular weight immunogens in virus suspensions. J Immunol. 1966 Nov;97(5):612–620. [PubMed] [Google Scholar]
  2. Buser F. Side reaction to measles vaccination suggesting the Arthus phenomenon. N Engl J Med. 1967 Aug 3;277(5):250–251. doi: 10.1056/NEJM196708032770507. [DOI] [PubMed] [Google Scholar]
  3. Cartwright B., Smale C. J., Brown F. Surface structure of vesicular stomatitis virus. J Gen Virol. 1969 Jul;5(1):1–10. doi: 10.1099/0022-1317-5-1-1. [DOI] [PubMed] [Google Scholar]
  4. Chow M., Baltimore D. Isolated poliovirus capsid protein VP1 induces a neutralizing response in rats. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7518–7521. doi: 10.1073/pnas.79.23.7518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dimmock N. J. Mechanisms of neutralization of animal viruses. J Gen Virol. 1984 Jun;65(Pt 6):1015–1022. doi: 10.1099/0022-1317-65-6-1015. [DOI] [PubMed] [Google Scholar]
  6. Dreyfus G., Guimaraes-Motta H., Silva J. L. Effect of hydrostatic pressure on the mitochondrial ATP synthase. Biochemistry. 1988 Sep 6;27(18):6704–6710. doi: 10.1021/bi00418a010. [DOI] [PubMed] [Google Scholar]
  7. Erijman L., Weber G. Oligomeric protein associations: transition from stochastic to deterministic equilibrium. Biochemistry. 1991 Feb 12;30(6):1595–1599. doi: 10.1021/bi00220a022. [DOI] [PubMed] [Google Scholar]
  8. Gallione C. J., Greene J. R., Iverson L. E., Rose J. K. Nucleotide sequences of the mRNA's encoding the vesicular stomatitis virus N and NS proteins. J Virol. 1981 Aug;39(2):529–535. doi: 10.1128/jvi.39.2.529-535.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kim H. W., Canchola J. G., Brandt C. D., Pyles G., Chanock R. M., Jensen K., Parrott R. H. Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine. Am J Epidemiol. 1969 Apr;89(4):422–434. doi: 10.1093/oxfordjournals.aje.a120955. [DOI] [PubMed] [Google Scholar]
  10. King L., Weber G. Conformational drift of dissociated lactate dehydrogenases. Biochemistry. 1986 Jun 17;25(12):3632–3637. doi: 10.1021/bi00360a023. [DOI] [PubMed] [Google Scholar]
  11. Mandel B. Neutralization of animal viruses. Adv Virus Res. 1978;23:205–268. doi: 10.1016/S0065-3527(08)60101-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Norrby E. Toward new viral vaccines for man. Adv Virus Res. 1987;32:1–34. doi: 10.1016/s0065-3527(08)60473-x. [DOI] [PubMed] [Google Scholar]
  13. Oehen S., Hengartner H., Zinkernagel R. M. Vaccination for disease. Science. 1991 Jan 11;251(4990):195–198. doi: 10.1126/science.1824801. [DOI] [PubMed] [Google Scholar]
  14. Paladini A. A., Jr, Weber G. Pressure-induced reversible dissociation of enolase. Biochemistry. 1981 Apr 28;20(9):2587–2593. doi: 10.1021/bi00512a034. [DOI] [PubMed] [Google Scholar]
  15. Richert L., Or A., Shinitzky M. Promotion of tumor antigenicity in EL-4 leukemia cells by hydrostatic pressure. Cancer Immunol Immunother. 1986;22(2):119–124. doi: 10.1007/BF00199125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ruan K., Weber G. Dissociation of yeast hexokinase by hydrostatic pressure. Biochemistry. 1988 May 3;27(9):3295–3301. doi: 10.1021/bi00409a026. [DOI] [PubMed] [Google Scholar]
  17. Ruan K., Weber G. Hysteresis and conformational drift of pressure-dissociated glyceraldehydephosphate dehydrogenase. Biochemistry. 1989 Mar 7;28(5):2144–2153. doi: 10.1021/bi00431a028. [DOI] [PubMed] [Google Scholar]
  18. Silva J. L., Miles E. W., Weber G. Pressure dissociation and conformational drift of the beta dimer of tryptophan synthase. Biochemistry. 1986 Sep 23;25(19):5780–5786. doi: 10.1021/bi00367a065. [DOI] [PubMed] [Google Scholar]
  19. Silva J. L., Villas-Boas M., Bonafe C. F., Meirelles N. C. Anomalous pressure dissociation of large protein aggregates. Lack of concentration dependence and irreversibility at extreme degrees of dissociation of extracellular hemoglobin. J Biol Chem. 1989 Sep 25;264(27):15863–15868. [PubMed] [Google Scholar]
  20. Silva J. L., Weber G. Pressure-induced dissociation of brome mosaic virus. J Mol Biol. 1988 Jan 5;199(1):149–159. doi: 10.1016/0022-2836(88)90385-3. [DOI] [PubMed] [Google Scholar]
  21. Watt R. M., Herron J. N., Voss E. W., Jr First order dissociation rates between a subpopulation of high affinity rabbit anti-fluorescyl IgG antibody and homologous ligand. Mol Immunol. 1980 Oct;17(10):1237–1243. doi: 10.1016/0161-5890(80)90020-6. [DOI] [PubMed] [Google Scholar]
  22. Weber G., Drickamer H. G. The effect of high pressure upon proteins and other biomolecules. Q Rev Biophys. 1983 Feb;16(1):89–112. doi: 10.1017/s0033583500004935. [DOI] [PubMed] [Google Scholar]
  23. Weber G. Phenomenological description of the association of protein subunits subjected to conformational drift. Effects of dilution and of hydrostatic pressure. Biochemistry. 1986 Jun 17;25(12):3626–3631. doi: 10.1021/bi00360a022. [DOI] [PubMed] [Google Scholar]
  24. Zakowski J. J., Petri W. A., Jr, Wagner R. R. Role of matrix protein in assembling the membrane of vesicular stomatitis virus: reconstitution of matrix protein with negatively charged phospholipid vesicles. Biochemistry. 1981 Jun 23;20(13):3902–3907. doi: 10.1021/bi00516a037. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES