Skip to main content
Clinical Orthopaedics and Related Research logoLink to Clinical Orthopaedics and Related Research
. 2010 Apr 13;468(8):2260–2277. doi: 10.1007/s11999-010-1341-5

Effects of Pulsed Electromagnetic Fields on Human Osteoblastlike Cells (MG-63): A Pilot Study

Vincenzo Sollazzo 1,, Annalisa Palmieri 3, Furio Pezzetti 2, Leo Massari 1, Francesco Carinci 3
PMCID: PMC2895828  PMID: 20387020

Abstract

Background

Although pulsed electromagnetic fields (PEMFs) are used to treat delayed unions and nonunions, their mechanisms of action are not completely clear. However, PEMFs are known to affect the expression of certain genes.

Questions/purposes

We asked (1) whether PEMFs affect gene expression in human osteoblastlike cells (MG63) in vitro, and (2) whether and to what extent stimulation by PEMFs induce cell proliferation and differentiation in MG-63 cultures.

Methods

We cultured two groups of MG63 cells. One group was treated with PEMFs for 18 hours whereas the second was maintained in the same culture condition without PEMFs (control). Gene expression was evaluated throughout cDNA microarray analysis containing 19,000 genes spanning a substantial fraction of the human genome.

Results

PEMFs induced the upregulation of important genes related to bone formation (HOXA10, AKT1), genes at the transductional level (CALM1, P2RX7), genes for cytoskeletal components (FN1, VCL), and collagenous (COL1A2) and noncollagenous (SPARC) matrix components. However, PEMF induced downregulation of genes related to the degradation of extracellular matrix (MMP-11, DUSP4).

Conclusions and Clinical Relevance

PEMFs appear to induce cell proliferation and differentiation. Furthermore, PEMFs promote extracellular matrix production and mineralization while decreasing matrix degradation and absorption. Our data suggest specific mechanisms of the observed clinical effect of PEMFs, and thus specific approaches for use in regenerative medicine.

Introduction

PEMFs have been used for many years [44]. They reportedly are effective for treating nonunions [1, 7, 10], delayed unions [1, 42, 44], osteotomies [32], avascular necrosis of the femoral head [5, 34], bone grafts [11], and spinal fusion [36]. Although the therapeutic properties of PEMFs are well known, the sequence of events by which electromagnetic stimulation can bring about its desirable effects on bone healing is not completely understood. PEMFs modify some important physiologic parameters of cells, such as proliferation, transduction, transcription, synthesis, and secretion of growth factors [24]. PEMFs induce cell proliferation in mitogen-stimulated lymphocytes [10] and improve IL-2 receptor expression and IL-2 use in lymphocytes from aged donors, which are characterized by defective production and use of this growth factor [10]. PEMF exposure induces cell proliferation in human osteoblasts and chondrocytes cultured in vitro [18, 20, 38, 44, 45]. PEMFs determine signal transduction by means of intracellular release of Ca2+ leading to an increase in cytosolic Ca2+ and an increase in activated cytoskeletal calmodulin [9]. PEMFs induce a dose-dependent increase in bone [2] and cartilage differentiation [24, 33], and upregulation of mRNA expression of extracellular matrix molecules, proteoglycan, and Type II collagen [3]. The acceleration of chondrogenic differentiation is associated with increased expression of TGF-β1 mRNA and protein [4], suggesting the stimulation of TGF-β1 may be a mechanism through which PEMFs affect complex tissue behavior such as cell differentiation and through which the effects of PEMFs may be amplified [4]. PEMFs also are postulated to act at a membrane level influencing signal transduction of several hormones or growth factors such as parathyroid hormone, IGF 2, and adenosine A2a, producing the amplification of their transmembrane receptors [1, 19, 21, 23, 31, 46]. Studies of single genes using RT-PCR suggest activation of osteocalcin, osteopontin, and TGF-β transcription during osteogenesis [22] and inhibition of cyclooxygenase 2 in synovial fibroblasts stimulated with TNFα or lipopolysaccharide [21]. A wide analysis of gene expression in cells exposed to PEMFs has not been performed: most studies focus on a few aspects of cell activities or they have been performed using different types of signals in different experimental conditions.

We therefore asked (1) whether PEMFs affected a wide array of genes in human osteoblastlike cells (MG63), and (2) whether and to what extent PEMFs induce proliferation and differentiation of osteoblasts.

Materials and Methods

We treated osteoblastlike cell cultures (MG-63) with PEMFs for 18 hours, and maintained similar nontreated controls. Gene expression of both groups therefore was evaluated with cDNA microarray analysis, containing 19,000 genes spanning a substantial fraction of the human genome. All experiments were performed in triplicate in the same culture conditions for control and treated cells.

Osteoblastlike cells (MG63) were grown in sterile Falcon wells (Becton & Dickinson, Franklin Lakes, NJ) containing Eagle’s minimum essential medium supplemented with 10% fetal calf serum (Sigma-Aldrich, St Louis, MO) and antibiotics (penicillin 100 U/mL and streptomycin 100 μg/mL; Sigma-Aldrich). Cultures were maintained in a 5% CO2 humidified atmosphere at 37°C. For the assay, cells were collected and seeded at a density of 1 × 105 cells/mL in two multiwells (one for the control and one for the treated). Each multiwell was comprised of six wells, 9-cm2, in which 3-mL of complete medium was added.

After 24 hours, cells were exposed to PEMFs for 18 hours using a PEMF generator system (Igea, Carpi, Italy). The PEMF used in this study is used clinically to treat nonunions or delayed unions and avascular necrosis of the femoral head [3234]. The solenoids were powered using a Biostim pulse generator (Igea), a PEMF generator. The electromagnetic bioreactor applied to the cells has the following characteristics: intensity of the magnetic field, 2 ± 0.2 mT; amplitude of the induced electric tension, 5 ± 1 mV; signal frequency, 75 ± 2 Hz; and pulse duration, 1.3 ms. The stimulated multiwell was placed parallel between the two solenoids of the PEMF generator. The solenoids were placed at a distance of 10 cm and the multiwell was located on an acrylic support exactly at the center of the two solenoids. Control cultures were placed in the same incubator; nevertheless, the presence of the electromagnetic field was checked and its value was less than 0.05 mT. This value was ineffective in previous studies [3846]. After 18 hours, when cultures were subconfluent, cells were processed for RNA extraction.

For DNA microarray screening and analysis, we used the same protocol as described previously [1216]. Briefly, RNA was extracted from cells by using RNAzol. Ten micrograms of total RNA was used for each sample. cDNA was synthesized by using Superscript II (Life Technologies, Invitrogen, Milano, Italy) and amino-allyl dUTP (Sigma-Aldrich). Monoreactive Cy3 and Cy5 esters (Amersham Pharmacia, Little Chalfont, UK) were used for indirect cDNA labeling. RNA extracted from untreated cells was labeled with Cy3 and used as control against the Cy5-labeled treated (PG) cDNA in the first experiment and then switched. For 20 K human DNA microarrays slides (MWG Biotech AG, Ebersberg, Germany), 100 μL of the sample and control cDNAs in DIG Easy hybridization solution (Roche, Basel, Switzerland) were used in a sandwich hybridization of the two slides, constituting the 20 K set at 37°C overnight. Washing was performed three times for 10 minutes with 1× saline sodium citrate (SSC) and 0.1% sodium dodecyl sulfate at 42°C and three times for 5 minutes with 0.1× SSC at room temperature. Slides were dried by centrifugation for 2 minutes at 2000 rpm. Hybridized arrays were scanned with a GenePix 4000 scanner (Axon Instruments) at variable photomultiplier tube (PMT) voltage to obtain maximal signal intensities with less than 1% probe saturation.

The Foreground Median intensity for Cy3 and Cy5, Background Median intensity for Cy3 and Cy5, spot size data were imported into BRB-ArrayTools software [43] using the Import wizard function. Global normalization was used to median center the log-ratios on each array r to adjust for differences in labeling intensities of the Cy3 and Cy5 dyes.

The normalized Log ratios also were imported to Significance Analysis of Microarray (SAM) [48] software to identify differentially expressed genes. SAM assigns a score to each gene on the basis of a change in gene expression relative to the standard deviation of repeated measurements. For genes with scores greater than an adjustable threshold, SAM uses permutations of the repeated measurements to estimate the percentage of genes identified by chance—the false discovery rate (FDR). Analysis parameters (Delta) were set to result in zero FDR.

Results

PEMF affected gene expression in MG-63 osteoblastlike cells (Fig. 1). The genes differentially expressed in cells treated with PEMFs were either upregulated (268 genes) (Table 1) or downregulated (277 genes) (Table 2). PEMF induced osteoblast proliferation and differentiation and regulated genes involved in bone formation in the direction of an enhancement of osteogenesis (Tables 3, 4).

Fig. 1.

Fig. 1

A microarray (SAM) plot of MG63 exposed to PEMFs versus control is shown. Expected differentially expressed genes are reported on the x axis, whereas observed differentially expressed genes are reported on the y axis. Downregulated genes (green) are located in the lower left of the graph; upregulated genes (red) are in the upper right; genes with different expression but statistically insignificant are shown in black. Parallel lines drawn from the lower left to upper right squares are the cutoff limits. The solid line indicates the equal value of observed and expected differentially expressed genes.

Table 1.

Upregulated genes

GenBank Name Symbol Cytoband Score (d)*
W19447 DEAD (Asp-Glu-Ala-Asp) box polypeptide 51 DDX51 12q24.33 45.15
BM908669 Glyceraldehyde-3-phosphate dehydrogenase GAPDH 12p13 42.40
W33064 Tubulin, alpha 4a TUBA4A 2q35 40.89
BI258438 Cofilin 1 (nonmuscle) CFL1 11q13 39.61
H80610 Hypothetical protein LOC729176 LOC729176 6q24.3 35.42
R23641 Vacuolar protein sorting 13 homolog A VPS13A 9q21 32.28
BM006748 Enolase 1 (alpha) ENO1 1p36.3-p36.2 31.99
W44826 Major histocompatibility complex, class I, E HLA-E 6p21.3 31.04
BG547115 Ferritin, heavy polypeptide 1 FTH1 11q13 30.55
BG288116 Integrin, alpha 2 ITGA2 5q23-q31 27.14
BQ014343 Family with sequence similarity 62 FAM62B 7q36.3 26.05
R89805 ELOVL family member 7 ELOVL7 5q12.1 25.81
BQ108591 Ribosomal protein S5 RPS5 19q13.4 25.71
H61302 Hexose-6-phosphate dehydrogenase H6PD 1p36 25.10
AA151568 Testis enhanced gene transcript (BAX inhibitor 1) TEGT 12q12-q13 24.95
H30300 Small nuclear ribonucleoprotein polypeptide N SNRPN 15q11.2 24.75
N72456 Similar to RIKEN cDNA A730055C05 gene LOC388335 17p13.1 24.38
H25618 Chromatin modifying protein 5 CHMP5 9p13.3 24.12
AA059376 Similar to phosphodiesterase 4D interacting protein isoform 2 LOC653513 1q21.1 24.01
W30787 DnaJ (Hsp40) homolog, subfamily C, member 15 DNAJC15 13q14.1 24.00
BM801770 Solute carrier family 35, member E3 SLC35E3 12q15 23.64
AA099240 NIPA-like domain containing 3 NPAL3 1p36.12-p35.1 23.55
W00391 Solute carrier family 11 member 2 SLC11A2 12q13 23.36
H12528 Annexin A5 ANXA5 4q26-q28|4q28-q32 23.13
N54759 Prenylcysteine oxidase 1 PCYOX1 2p13.3 23.08
T89646 ST3 beta-galactoside alpha-2,3-sialyltransferase 2 ST3GAL2 16q22.1 22.82
AA029517 KCNQ1 overlapping transcript 1 KCNQ1OT1 11p15 22.75
W47664 NAD(P)H dehydrogenase, quinone 1 NQO1 16q22.1 22.73
W02597 PMS1 postmeiotic segregation increased 1 PMS1 2q31-q33|2q31.1 22.61
R11416 Seryl-tRNA synthetase SARS 1p13.3-p13.1 22.55
H67332 GTP binding protein 1 GTPBP1 22q13.1 22.43
H86020 NADH dehydrogenase NDUFB5 3q26.33 22.21
AA031564 Chromosome 1 open reading frame 212 C1orf212 1p34.3 21.90
W67485 Zinc finger protein 136 ZNF136 19p13.2-p13.12 21.68
W32906 Zinc finger protein 702 ZNF702 19q13.41 21.49
BI492783 Zinc finger protein 207 ZNF207 17q11.2 21.43
BE278092 Ribosomal protein L10 RPL10 Xq28 21.42
N90960 Par-6 partitioning defective 6 homolog beta PARD6B 20q13.13 21.32
BG565169 Ferritin, light polypeptide FTL 19q13.3-q13.4 21.29
H75902 Complement component (3b/4b) receptor 1 CR1 1q32 21.15
W31736 NADH dehydrogenase (ubiquinone) flavoprotein 1, 51 kDa NDUFV1 11q13 20.96
AA417686 Casein kinase 1, gamma 3 CSNK1G3 5q23 20.94
R18627 Amyloid beta precursor protein binding protein 2 APPBP2 17q21-q23 20.81
W38809 Kelch-like 8 (Drosophila) KLHL8 4q22.1 20.76
BM456402 Hypothetical gene LOC96610 LOC96610 22q11.22 20.70
AA044942 Eukaryotic translation initiation factor 4 gamma, 1 EIF4G1 3q27-qter 20.44
BM041235 Actin, alpha 2, smooth muscle, aorta ACTA2 10q23.3 20.42
AI690073 Glutamate-cysteine ligase, catalytic subunit GCLC 6p12 20.30
AI734239 Coiled-coil domain containing 120 CCDC120 Xp11.23 20.28
N72922 PDZ and LIM domain 5 PDLIM5 4q22 20.23
N50768 Chromosome X open reading frame 57 CXorf57 Xq22.3 20.05
N76504 Hypothetical protein LOC257407 LOC257407 2q37.1 19.69
N45145 Zinc finger, CCHC domain containing 4 ZCCHC4 4p15.2 19.60
BM922198 Tubulin, beta 2C TUBB2C 9q34 19.57
H65175 Solute carrier family 31 (copper transporters), member 1 SLC31A1 9q31-q32 19.50
H83172 Cytochrome b5 domain containing 2 CYB5D2 17p13.2 19.28
N73208 Zinc finger protein 207 ZNF207 17q11.2 19.26
H95413 Hydroxysteroid (17-beta) dehydrogenase 7 HSD17B7 1q23 19.21
N72546 Cathepsin S CTSS 1q21 19.08
BM705000 Cold shock domain protein A CSDA 12p13.1 19.08
W86495 Coiled-coil-helix-coiled-coil-helix domain containing 7 CHCHD7 8q12.1 19.07
BI092679 H19, imprinted maternally expressed untranslated mRNA H19 11p15.5 18.99
N45602 Serine/threonine kinase 4 STK4 20q11.2-q13.2 18.93
H78769 Interleukin-1 receptor-associated kinase 4 IRAK4 12q12 18.88
W35195 Lethal giant larvae homolog 1 (Drosophila) LLGL1 17p11.2 18.88
AA062617 Myotubularin related protein 9 MTMR9 8p23-p22 18.85
BE315195 Ribosomal protein L8 RPL8 8q24.3 18.84
BQ067508 Glyceraldehyde-3-phosphate dehydrogenase GAPDH 12p13 18.76
R35530 RAD23 homolog B (S cerevisiae) RAD23B 9q31.2 18.75
H24644 AlkB, alkylation repair homolog 5 (E coli) ALKBH5 17p11.2 18.57
BM010025 Signal transducer and activator of transcription 3 STAT3 17q21.31 18.53
H08490 Chloride channel 2 CLCN2 3q27-q28 18.39
H80175 Radixin RDX 11q23 18.27
H46045 Tripartite motif-containing 46 TRIM46 1q22 18.18
N25456 Mutated in colorectal cancers MCC 5q21 18.07
AA047157 CD82 molecule CD82 11p11.2 18.01
AA044701 ADAMTS-like 5 ADAMTSL5 19p13.3 17.82
BM477950 Ribosomal protein L8 RPL8 8q24.3 17.79
AI587328 Radical S-adenosyl methionine domain containing 2 RSAD2 2p25.2 17.68
W03282 Dihydrofolate reductase DHFR 5q11.2-q13.2 17.62
BQ072807 Ribosomal protein L13a RPL13A 19q13.3 17.52
H01638 Coiled-coil domain containing 82 CCDC82 11q21 17.48
BG529617 Ribosomal protein, large, P1 RPLP1 15q22 17.45
H63198 RAB interacting factor RABIF 1q32-q41 17.34
BG397205 Proteasome (prosome, macropain) subunit, beta type, 4 PSMB4 1q21 17.33
W31052 Nephronophthisis 3 (adolescent) NPHP3 3q22.1 17.26
BM925268 Chromosome 12 open reading frame 32 C12orf32 12p13.33 17.25
H83233 Malate dehydrogenase 1, NAD (soluble) MDH1 2p13.3 17.23
W19108 UBX domain containing 4 UBXD4 2p23.3 17.22
AA004532 Fusion (involved in t(12;16) in malignant liposarcoma) FUS 16p11.2 17.21
R50299 SHANK-associated RH domain interactor SHARPIN 8q24.3 17.01
R47837 Zinc finger, RAN-binding domain containing 2 ZRANB2 1p31 16.99
H85307 V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog KRAS 12p12.1 16.89
N49567 Agmatine ureohydrolase (agmatinase) AGMAT 1p36.21 16.88
N57076 KIAA1909 protein KIAA1909 5p15.33 16.84
BI116974 Ribosomal protein L18 RPL18 19q13 16.83
N40643 Chromosome 10 open reading frame 18 C10orf18 10p15.1 16.74
R82575 KIAA1704 KIAA1704 13q13-q14 16.51
BI196362 Tubulin, alpha 1a TUBA1A 12q12-q14.3 16.36
AA132192 Pleckstrin homology domain containing, family H member 2 PLEKHH2 2p21 16.34
N31221 Hypothetical protein DKFZp667M2411 DKFZp667M2411 17q11.2 16.31
H45243 GDNF-inducible zinc finger protein 1 GZF1 20p12.3-p11.21 16.29
T86807 Serine/threonine kinase 19 STK19 6p21.3 16.28
AA057270 Choline kinase alpha CHKA 11q13.2 16.20
R66209 Synaptosomal-associated protein, 29 kDa SNAP29 22q11.21 16.13
R92306 DnaJ (Hsp40) homolog, subfamily C, member 19 DNAJC19 3q26.33 16.13
T80698 Glycine-N-acyltransferase-like 1 GLYATL1 11q12.1 16.12
N42722 Guanine nucleotide binding protein (G protein), gamma 12 GNG12 1p31.3 16.03
BM911128 Secreted protein, acidic, cysteine-rich (osteonectin) SPARC 5q31.3-q32 15.99
N34619 Coagulation factor II (thrombin) receptor-like 2 F2RL2 5q13 15.97
AA039528 C-Maf-inducing protein CMIP 16q23 15.76
N53715 Neural precursor cell expressed NEDD8 14q12 15.75
BQ055308 Ribosomal protein L4 RPL4 15q22 15.73
N44567 Torsin A interacting protein 1 TOR1AIP1 1q24.2 15.63
AA046698 Selenoprotein I SELI 2p23.3 15.62
T75376 Notch homolog 2 (Drosophila) NOTCH2 1p13-p11 15.49
N46675 Unkempt homolog (Drosophila) UNK 17q25.1 15.44
R93756 Calmodulin 1 (phosphorylase kinase, delta) CALM1 14q24-q31 15.42
R67177 Adenylate cyclase 1 (brain) ADCY1 7p13-p12 15.39
W24597 Deoxyribonuclease II, lysosomal DNASE2 19p13.2 15.28
H43825 HLA-B associated transcript 2 BAT2 6p21.3 15.26
N20577 Leucine rich repeat containing 57 LRRC57 15q15.1 15.24
BI598074 Neugrin, neurite outgrowth associated NGRN 15q26.1 15.23
W79562 Arginyltransferase 1 ATE1 10q26.13 15.20
R68004 Poly(rC) binding protein 2 PCBP2 12q13.12-q13.13 15.19
AA040826 Major histocompatibility complex, class I, C HLA-C 6p21.3 15.12
H52744 Abhydrolase domain containing 12 ABHD12 20p11.21 15.11
N78350 RAN binding protein 1 RANBP1 22q11.21 15.10
BQ026918 Collagen, type I, alpha 2 COL1A2 7q22.1 15.05
BG109286 COX18 cytochrome c oxidase assembly homolog COX18 4q13.3 15.02
W47525 Trans-golgi network protein 2 TGOLN2 2p11.2 15.02
BI494911 Nck-associated protein 5 NAP5 2q21.2 14.89
N94192 Glucosamine (N-acetyl)-6-sulfatase (Sanfilippo disease IIID) GNS 12q14 14.84
N28281 Zinc finger protein 552 ZNF552 19q13.43 14.61
R84726 Adenosine A1 receptor ADORA1 1q32.1 14.59
W40304 Apoptosis inhibitor 5 API5 11p11.2 14.54
W63760 Coilin COIL 17q22-q23 14.52
T97408 BCL2-associated athanogene BAG1 9p12 14.51
BM923884 Glutathione S-transferase pi GSTP1 11q13 14.49
N46186 Glutaredoxin 5 homolog (S cerevisiae) GLRX5 14q32.13 14.40
N57438 Vitamin K epoxide reductase complex, subunit 1-like 1 VKORC1L1 7q11.21 14.38
W19461 Abl interactor 2 ABI2 2q33 14.33
R74572 Serine incorporator 1 SERINC1 6q22.31 14.24
N28330 Melanoma cell adhesion molecule MCAM 11q23.3 14.23
N20611 GTP-binding protein 10 (putative) GTPBP10 7q21.13 14.23
H74119 Sec61 beta subunit SEC61B 9q22.32-q31.3 14.13
N52748 Zinc finger protein 536 ZNF536 19q12 14.13
R48809 Hypothetical gene supported by AK123662 LOC388692 1q21.1 14.13
AA005393 NADH dehydrogenase (ubiquinone) flavoprotein 2, 24 kDa NDUFV2 18p11.31-p11.2 14.12
R89913 CD58 molecule CD58 1p13 14.08
W03395 Elongation of very long chain fatty acids-like 1 ELOVL1 1p34.2 13.97
BM541374 Peptidylprolyl isomerase H (cyclophilin H) PPIH 1p34.1 13.96
AA046918 Splicing factor 3b, subunit 2, 145 kDa SF3B2 11q13.1 13.95
R60604 TAF5-like RNA polymerase II TAF5L 1q42.13 13.89
H39844 Small nuclear RNA activating complex, polypeptide 3 SNAPC3 9p22.3 13.84
N39630 Purinergic receptor P2X, ligand-gated ion channel, 7 P2RX7 12q24 13.82
H57205 Vinculin VCL 10q22.1-q23 13.77
N39274 Hook homolog 3 (Drosophila) HOOK3 8p11.21 13.74
H14054 Beta-1,3-glucuronyltransferase 3 (glucuronosyltransferase I) B3GAT3 11q12.3 13.59
BG676419 Potassium channel tetramerisation domain containing 13 KCTD13 16p11.2 13.59
N31020 Similar to Signal peptidase complex subunit 2 LOC653566 1p35.3 13.57
BG110260 FK506 binding protein 14, 22 kDa FKBP14 7p15.1 13.56
H53224 Transferrin receptor (p90, CD71) TFRC 3q29 13.54
R31353 Glucosamine (N-acetyl)-6-sulfatase (Sanfilippo disease IIID) GNS 12q14 13.51
AA128133 Nexilin (F actin binding protein) NEXN 1p31.1 13.49
BQ070812 Proteasome (prosome, macropain) 26S subunit, ATPase, 3 PSMC3 11p12-p13 13.48
H94761 Disrupted in schizophrenia 1 DISC1 1q42.1 13.48
BQ050099 Ras homolog gene family, member A RHOA 3p21.3 13.39
BG169474 UTP14, U3 small nucleolar ribonucleoprotein UTP14A Xq25 13.35
R69639 Carbohydrate (chondroitin 4) sulfotransferase 11 CHST11 12q 13.35
T77351 Rotatin RTTN 18q22.2 13.33
AA203284 Basic transcription factor 3 BTF3 5q13.2 13.33
AA056664 V-akt murine thymoma viral oncogene homolog 1 AKT1 14q32.32|14q32.32 13.31
BE385427 Chromatin modifying protein 6 CHMP6 17q25.3 13.26
BI850411 Calnexin CANX 5q35 13.19
BG687243 Similar to ribosomal protein S13 LOC729236 1p32.3 13.16
BE256276 Ribosomal protein L32 RPL32 3p25-p24 13.15
W17368 Hexose-6-phosphate dehydrogenase H6PD 1p36 13.04
N56629 Hypoxia upregulated 1 HYOU1 11q23.1-q23.3 13.02
R48663 Nuclear factor of activated T-cells, cytoplasmic NFATC2IP 16p11.2 12.98
BQ052715 Pyruvate kinase, muscle PKM2 15q22 12.97
R02012 Downstream neighbor of SON DONSON 21q22.1 12.97
AA203750 Dimethylglycine dehydrogenase DMGDH 5q14.1 12.96
AA058399 Zinc finger protein 720 ZNF720 16p11.2 12.89
H69509 ATP-binding cassette, sub-family B (MDR/TAP) ABCB10 1q42 12.86
W20454 Fibronectin 1 FN1 2q34 12.85
N80357 NDRG family member 2 NDRG2 14q11.2 12.84
W16514 Rho family GTPase 1 RND1 12q12-q13 12.81
AA021382 Secreted protein, acidic, cysteine-rich (osteonectin) SPARC 5q31.3-q32 12.76
H90355 Ubiquitin protein ligase E3 component n-recognin 1 UBR1 15q13 12.67
N44935 B-cell receptor-associated protein 31 BCAP31 Xq28 12.66
AA054571 Phosphatidylinositol glycan anchor biosynthesis, class V PIGV 1p36.11 12.65
W61045 Polymerase (DNA-directed), delta 4 POLD4 11q13 12.65
R25725 Cylindromatosis (turban tumor syndrome) CYLD 16q12.1 12.63
BM468576 Chaperonin containing TCP1, subunit 6A (zeta 1) CCT6A 7p11.2 12.61
R55158 V-ral simian leukemia viral oncogene homolog B RALB 2cen-q13 12.58
N77205 RAN binding protein 2 RANBP2 2q12.3 12.55
AA121350 DCN1, defective in cullin neddylation 1 DCUN1D2 13q34 12.49
H22871 Peptidase D PEPD 19q12-q13.2 12.41
H71235 Sialic acid binding Ig-like lectin 5 SIGLEC5 19q13.3 12.41
W25557 Tripartite motif-containing 28 TRIM28 19q13.4 12.37
H78781 Absent in melanoma 1 AIM1 6q21 12.37
N51173 Spastin SPAST 2p24-p21 12.36
AA001324 TIMP metallopeptidase inhibitor 1 TIMP1 Xp11.3-p11.23 12.34
R16054 HMG-box transcription factor 1 HBP1 7q22-q31 12.34
R88469 Dipeptidyl-peptidase 6 DPP6 7q36.2 12.34
AA037249 ATP synthase ATP5C1 10p15.1 12.32
T84763 Cell division cycle associated 8 CDCA8 1p34.3 12.30
R69935 Hypothetical protein FLJ10404 FLJ10404 5q35.3 12.29
H89836 Phospholipase D1, phosphatidylcholine-specific PLD1 3q26 12.28
R48131 SH3-domain binding protein 2 SH3BP2 4p16.3 12.27
AA007268 Polyhomeotic homolog 2 (Drosophila) PHC2 1p34.3 12.19
H52288 Metallothionein 1E MT1E 16q13 12.18
AA044796 Similar to BMS1-like, ribosome assembly protein LOC729096 10q22.2 12.17
T70535 NUAK family, SNF1-like kinase, 1 NUAK1 12q23.3 12.16
BQ083501 Ribosomal protein L12 RPL12 9q34 12.16
H72796 Hexose-6-phosphate dehydrogenase H6PD 1p36 12.05
N99693 Chromosome 12 open reading frame 32 C12orf32 12p13.33 12.05
BQ063705 Coiled-coil-helix-coiled-coil-helix domain containing 2 CHCHD2 7p11.2 12.04
AA040816 Cleavage and polyadenylation specific factor 3, 73 kDa CPSF3 2p25.1 12.03
R50700 Mercaptopyruvate sulfurtransferase MPST 22q13.1 11.95
H38879 Phosphoserine phosphatase PSPH 7p15.2-p15.1 11.93
AA059211 Male germ cell-associated kinase MAK 6p24 11.93
W21187 Thymidylate synthetase TYMS 18p11.32 11.92
W49716 GRAM domain containing 3 GRAMD3 5q23.2 11.90
W05242 DEAD (Asp-Glu-Ala-Asp) box polypeptide 5 DDX5 17q21 11.90
N28562 Exportin, tRNA (nuclear export receptor for tRNAs) XPOT 12q14.2 11.86
AA128587 Zinc finger protein 629 ZNF629 16p11.2 11.83
N76529 Membrane metallo-endopeptidase MME 3q25.1-q25.2 11.72
N44807 NF-kappaB activating protein NKAP Xq24 11.67
AA147560 Hect domain and RLD 2 pseudogene LOC440248 15q13.1 11.67
H62176 E1A binding protein p300 EP300 22q13.2 11.65
AA030048 Protein kinase, cAMP-dependent, regulatory, type I, beta PRKAR1B 7p22 11.63
R82429 Alpha-methylacyl-CoA racemase AMACR 5p13 11.63
BM457262 Non-metastatic cells 1, protein (NM23A) expressed in NME1 17q21.3 11.61
W19413 Cytoskeleton-associated protein 4 CKAP4 12q23.3 11.59
AA054778 Homeobox A10 HOXA10 7p15-p14 11.58
N36197 Proline-rich protein HaeIII subfamily 1 PRH1 12p13.2 11.57
W47528 Overexpressed in colon carcinoma-1 OCC-1 12q23.3 11.54
BM559619 MOB1, Mps One Binder kinase activator-like 1B (yeast) MOBK1B 2p13.1 11.53
N46377 Galactose-3-O-sulfotransferase 4 GAL3ST4 7q22.1 11.53
AA033651 UDP-N-acetyl-alpha-D-galactosamine GALNT6 12q13 11.50
R97614 Ribosomal protein L32 pseudogene 3 RPL32P3 3q21.3 11.49
H82707 Protein phosphatase 2 (formerly 2A), regulatory subunit B’ PPP2R3A 3q22.1 11.48
H16005 Niemann-Pick disease, type C2 NPC2 14q24.3 11.46
R23610 Zinc and ring finger 2 ZNRF2 7p15.1 11.45
H25541 Ring finger protein 138 RNF138 18q12.1 11.44
AA114919 Y box binding protein 1 YBX1 1p34 11.43
H57747 Betaine-homocysteine methyltransferase BHMT 5q13.1-q15 11.42
BM974828 Ribosomal protein L18 RPL18 19q13 11.41
H97422 NOL1/NOP2/Sun domain family, member 3 NSUN3 3q11.2 11.40
BG545342 Synaptojanin 1 SYNJ1 21q22.2 11.40
BE790941 Centromere protein O CENPO 2p23.3 11.36
H66235 Ataxin 2 ATXN2 12q24.1 11.31
H82010 Transcription termination factor, RNA polymerase II TTF2 1p22 11.30
N40640 WW domain binding protein 5 WBP5 Xq22.1-q22.2 11.27
H21773 Hypothetical protein LOC145758 LOC145758 15q26.3 11.25
T97204 Interleukin 6 receptor IL6R 1q21 11.22
BQ050102 Proteasome (prosome, macropain) subunit, beta type, 2 PSMB2 1p34.2 11.22
W02584 Lysosomal trafficking regulator LYST 1q42.1-q42.2 11.06
H61357 Tumor protein p53 (Li-Fraumeni syndrome) TP53 17p13.1 11.03
N38855 Cyclin B1 interacting protein 1 CCNB1IP1 14q11.2 11.03
BM928663 Chromodomain helicase DNA binding protein 4 CHD4 12p13 11.01
BM905720 LSM12 homolog (S cerevisiae) LSM12 17q21.31 10.99
H64813 Ribosomal protein S28 pseudogene LOC646195 11q14.1 10.98
AA058638 ATPase, H + transporting, lysosomal 13 kDa, V1 subunit G1 ATP6V1G1 9q32 10.98
BG469305 Keratin 18 KRT18 12q13 10.96
T95392 Microfibrillar-associated protein 3-like MFAP3L 4q32.3 10.91
AA037600 Regulator of chromosome condensation 1 RCC1 1p36.1 10.90

* SAM assigns a score to each gene on the basis of a change in gene expression relative to the standard deviation of repeated measurements.

Table 2.

Downregulated genes

GenBank Name Symbol Cytoband Score (d)*
BG700671 Potassium inwardly rectifying channel KCNJ13 2q37 −57.88
H88081 Otoraplin OTOR 20p12.1-p11.23 −55.73
H81127 Protein kinase, AMP-activated PRKAB2 1q21.1 −49.72
H44375 Myocyte enhancer factor 2B MEF2B 19p12 −45.98
N48215 Solute carrier family 20 SLC20A1 2q11-q14 −45.74
AA099522 MORC family CW-type zinc finger 4 MORC4 Xq22.3 −45.56
BE904276 Protein tyrosine phosphatase, non-receptor type 3 PTPN3 9q31 −45.11
H03729 Epidermal growth factor receptor EGFR 7p12 −41.14
T84537 Fanconi anemia, complementation group D2 FANCD2 3p26 −41.10
BG776239 Wilms tumor 1 WT1 11p13 −38.77
AA044149 Methylmalonyl CoA epimerase MCEE 2p13.3 −38.44
BF437100 Transmembrane protein 87B TMEM87B 2q13 −37.68
AA010608 Parvalbumin PVALB 22q12-q13.1|22q13.1 −36.84
BG818724 Solute carrier family 7 SLC7A1 13q12-q14 −36.44
AA156812 Collagen, Type XVIII, alpha 1 COL18A1 21q22.3 −35.48
N76723 Hypothetical protein LOC150166 LOC150166 22q11.21 −35.03
N50000 Methionine adenosyltransferase I, alpha MAT1A 10q22 −34.96
AA136950 Plexin domain containing 2 PLXDC2 10p12.32-p12.31 −34.86
BG620850 Chorionic somatomammotropin hormone 2 CSH2 17q24.2 −34.04
H79911 Core-binding factor, runt domain CBFA2T3 16q24 −33.25
N55596 NOL1/NOP2/Sun domain family, member 7 NSUN7 4p14 −33.05
W44535 Neurochondrin NCDN 1p34.3 −33.00
N42329 Suppressor of cytokine signaling 6 SOCS6 18q22.2 −32.03
AA127799 FYVE and coiled-coil domain containing 1 FYCO1 3p21.31 −31.87
BG622452 ADAM metallopeptidase domain 12 (meltrin alpha) ADAM12 10q26.3 −31.86
BQ073808 Proteasome (prosome, macropain) PSMC4 19q13.11-q13.13 −31.65
BM466167 Septin 6 SEP6 Xq24 −31.55
H52445 Leucine rich repeat containing 31 LRRC31 3q26.2 −31.41
W87840 Helicase with zinc finger HELZ 17q24.2 −29.81
R53682 SH2 domain containing 3C SH2D3C 9q34.11 −29.56
H69334 Pirin (iron-binding nuclear protein) PIR Xp22.2 −29.15
W05657 E74-like factor 1 (ets domain transcription factor) ELF1 13q13 −28.60
W47223 Mitochondrial trans-2-enoyl-CoA reductase MECR 1p36.1-p35.1 −28.59
AA053903 FRY-like FRYL 4p12 −28.54
N44611 Transmembrane protein 50B TMEM50B 21q22.11 −28.28
R99229 Hydroxymethylbilane synthase HMBS 11q23.3 −28.12
BM857788 Nuclear receptor co-repressor 2 NCOR2 12q24 −27.72
N52672 Nuclear receptor subfamily 1, group D, member 2 NR1D2 3p24.2 −27.52
H17037 Similar to CG4502-PA FLJ25076 5p15.31 −26.95
BE779318 Transcription elongation factor B (SIII) TCEB3 1p36.1 −26.77
T90862 Remodeling and spacing factor 1 RSF1 11q14.1 −26.74
AA455435 Chromosome 9 open reading frame 5 C9orf5 9q31 −26.67
AI188464 Matrix metallopeptidase 11 (stromelysin 3) MMP11 22q11.2|22q11.23 −26.36
N54724 Chromosome 14 open reading frame 24 C14orf24 14q13.2 −26.14
W38932 Heme oxygenase (decycling) 2 HMOX2 16p13.3 −25.94
N51855 Poly (ADP-ribose) polymerase family, member 2 PARP2 14q11.2-q12 −25.87
R99225 Keratin associated protein 4-7 KRTAP4-7 17q12-q21 −25.75
T78280 Histone acetyltransferase 1 HAT1 2q31.2-q33.1 −24.75
R16431 Chromosome 4 open reading frame 29 C4orf29 4q28.2 −24.61
H91396 Bile acid coenzyme A: amino acid N-acyltransferase BAAT 9q22.3 −24.49
T66756 Sprouty homolog 3 (Drosophila) SPRY3 Xq28 and Yq12 −24.16
BG565707 Fibrinogen gamma chain FGG 4q28 −24.00
AA031920 Cytochrome b-245, alpha polypeptide CYBA 16q24 −23.63
H77390 Golgi autoantigen, golgin subfamily a, 1 GOLGA1 9q33.3 −23.34
R98300 KIAA0286 protein KIAA0286 12q13.3 −23.28
H25352 Serum response factor binding protein 1 SRFBP1 5q23.1 −22.98
H67225 Solute carrier family 7 SLC7A2 8p22-p21.3 −22.56
AA151360 Rho GTPase activating protein 12 ARHGAP12 10q11.1 −22.36
N34285 Solute carrier family 26 SLC26A2 5q31-q34 −22.34
H59530 CHK1 checkpoint homolog (S pombe) CHEK1 11q24-q24 −22.25
H68793 Yip1 interacting factor homolog B (S cerevisiae) YIF1B 19q13.2 −22.09
H75715 Membrane bound O-acyltransferase domain containing 2 MBOAT2 2p25.1 −21.77
W19459 Dipeptidyl-peptidase 8 DPP8 15q22 −21.59
R61012 CDC42 binding protein kinase alpha (DMPK-like) CDC42BPA 1q42.11 −21.38
H61387 Reticulon 4 receptor RTN4R 22q11.21 −21.33
H28872 Aspartyl-tRNA synthetase DARS 2q21.3 −21.21
W47361 Folate receptor 3 (gamma) FOLR3 11q13 −21.16
T92079 Proteasome (prosome, macropain) activator subunit 2 PSME2 14q11.2 −21.15
N55035 Peroxisomal biogenesis factor 3 PEX3 6q23-q24 −21.03
N48524 TIA1 cytotoxic granule-associated RNA binding protein-like 1 TIAL1 10q −20.94
BG770889 RAB11 family interacting protein 2 (class I) RAB11FIP2 10q26.11 −20.75
H97449 Integrin, beta 5 ITGB5 3q21.2 −20.71
T78739 EPH receptor B2 EPHB2 1p36.1-p35 −20.62
H10896 Dual specificity phosphatase 4 DUSP4 8p12-p11 −20.42
T87012 CD79a molecule, immunoglobulin-associated alpha CD79A 19q13.2 −20.31
W16524 CDC42 binding protein kinase alpha (DMPK-like) CDC42BPA 1q42.11 −20.30
R47766 Transient receptor potential cation channel, subfamily C TRPC4AP 20q11.22 −20.23
T64848 Period homolog 3 (Drosophila) PER3 1p36.23 −20.16
N54874 Chromosome 20 open reading frame 39 C20orf39 20p11.21 −20.16
T95182 Chromosome 6 open reading frame 86 C6orf86 6p25.2 −20.14
BM994830 UDP-Gal:betaGlcNAc beta 1,4-galactosyltransferase B4GALT1 9p13 −19.97
N44094 Cyclin J CCNJ 10pter-q26.12 −19.77
R02669 Adaptor-related protein complex 3, beta 1 subunit AP3B1 5q14.1 −19.77
H00518 Multiple inositol polyphosphate histidine phosphatase, 1 MINPP1 10q23 −19.73
R64061 Pregnancy specific beta-1-glycoprotein 5 PSG5 19q13.2 −19.62
T84786 TRNA splicing endonuclease 2 homolog (S cerevisiae) TSEN2 3p25.1 −19.50
BI818657 Serine/threonine kinase 10 STK10 5q35.1 −19.49
H79636 KIAA1012 KIAA1012 18q12.1 −19.41
AA055329 Hypothetical locus LOC678655 LOC678655 12p13.31 −19.28
H80810 Formin-like 2 FMNL2 2q23.3 −19.26
R91604 Solute carrier family 38, member 2 SLC38A2 12q −19.21
T77428 ELOVL family member 5, elongation of long chain fatty acids ELOVL5 6p21.1-p12.1 −19.17
H85608 Protein phosphatase 1, regulatory (inhibitor) subunit 2 PPP1R2 3q29 −19.08
T98709 Major facilitator superfamily domain containing 11 MFSD11 17q25 −19.04
AA033653 Major histocompatibility complex, class II, DR beta 1 HLA-DRB1 6p21.3 −19.03
W78787 Complement component 5 C5 9q33-q34 −19.01
AA001996 MutS homolog 6 (E coli) MSH6 2p16 −18.87
N32361 PQ loop repeat containing 3 PQLC3 2p25.1 −18.85
H45525 Ras homolog gene family, member G (rho G) RHOG 11p15.5-p15.4 −18.79
AI927909 Homogentisate 1,2-dioxygenase (homogentisate oxidase) HGD 3q13.33 −18.75
R05896 Sodium channel modifier 1 SCNM1 1q21.2 −18.59
N80988 GTP binding protein 2 GTPBP2 6p21-p12 −18.53
N40600 SUMO1/sentrin specific peptidase 7 SENP7 3q12 −18.47
R23473 PAK1 interacting protein 1 PAK1IP1 6p24.2 −18.40
BQ063621 Calsyntenin 1 CLSTN1 1p36.22 −18.36
H58311 Coagulation factor V (proaccelerin, labile factor) F5 1q23 −18.29
H08311 DTW domain containing 2 DTWD2 5q23.1 −18.26
W02106 Solute carrier family 26 (sulfate transporter), member 2 SLC26A2 5q31-q34 −18.22
H39162 1-acylglycerol-3-phosphate O-acyltransferase 1 AGPAT1 6p21.3 −17.90
AI368607 Family with sequence similarity 13, member A1 FAM13A1 4q22.1 −17.89
AA040364 Hypothetical protein LOC284513 LOC284513 1p36.13 −17.84
H38322 SET binding factor 1 SBF1 22q13.33 −17.69
R73417 Peptidase inhibitor 16 PI16 6p21.2 −17.60
T67154 IMP2 inner mitochondrial membrane peptidase-like IMMP2L 7q31 −17.45
R96767 Phospholipase C, beta 4 PLCB4 20p12 −17.42
N35681 Diablo homolog (Drosophila) DIABLO 12q24.31 −17.29
W25288 SNAP-associated protein SNAPAP 1q21.3 −17.27
AA203442 Chromosome 9 open reading frame 39 C9orf39 9p22.2 −17.21
R73337 Zinc finger protein 777 ZNF777 7q36.1 −17.08
N73236 Storkhead box 1 STOX1 10q21.3 −16.94
H39156 Myotubularin related protein 6 MTMR6 13q12 −16.93
T77015 GSG1-like GSG1L 16p11.2 −16.66
R23489 Zinc finger protein 354A ZNF354A 5q35.3 −16.62
H64555 S100 calcium binding protein A2 S100A2 1q21 −16.52
W90519 Zinc finger protein 652 ZNF652 17q21.32 −16.50
W19130 Plexin A2 PLXNA2 1q32.2 −16.39
H78273 Sperm associated antigen 9 SPAG9 17q21.33 −16.33
AA156879 Zinc finger protein 615 ZNF615 19q13.33 −16.30
N53192 Hypothetical protein MGC22014 hCG_40738 2p13.1 −16.00
BG682138 Secreted protein, acidic, cysteine-rich (osteonectin) SPARC 5q31.3-q32 −15.87
H41974 Integrin, alpha 3 ITGA3 17q21.33 −15.84
H79050 Protein tyrosine phosphatase, receptor type, E PTPRE 10q26 −15.83
W48559 Zinc finger, MYM-type 1 ZMYM1 1p34.3 −15.78
H87048 ADP-ribosylation factor GTPase activating protein 3 ARFGAP3 22q13.2-q13.3 −15.76
T84174 Eukaryotic translation initiation factor 3 EIF3S9 7p22.2 −15.76
N40120 Zinc finger protein 33B ZNF33B 10q11.2 −15.74
W35313 Sterile alpha motif and leucine zipper containing kinase AZK ZAK 2q24.2 −15.70
AA040656 Zinc finger protein 502 ZNF502 3p21.31 −15.70
H18810 Importin 8 IPO8 12p11.21 −15.68
R12736 Staufen, RNA binding protein, homolog 2 (Drosophila) STAU2 8q13-q21.1 −15.61
N74741 BTG family, member 3 BTG3 21q21.1-q21.2 −15.61
AA069533 Chromosome 7 open reading frame 42 C7orf42 7q11.21 −15.55
N28267 Integrin, alpha X ITGAX 16p11.2 −15.47
AA135718 Neuropilin 1 NRP1 10p12 −15.46
R50902 Tubulin, gamma complex associated protein 6 TUBGCP6 22q13.31-q13.33 −15.46
BQ020504 Translocase of outer mitochondrial membrane 20 homolog TOMM20 1q42 −15.43
BM545369 Hect domain and RLD 2 pseudogene 2 HERC2P2 15q11.2 −15.39
W58640 SECIS binding protein 2 SECISBP2 9q22.2 −15.21
W49512 Bradykinin receptor B1 BDKRB1 14q32.1-q32.2 −15.19
N46282 PiggyBac transposable element derived 2 PGBD2 1q44 −15.12
W31642 Early B-cell factor 3 EBF3 10q26.3 −15.05
BG623586 ADAM metallopeptidase with thrombospondin type 1 motif ADAMTS5 21q21.3 −14.97
W87709 Kelch-like 23 (Drosophila) KLHL23 2q31.1 −14.97
N44005 EF-hand calcium binding domain 2 EFCAB2 1q44 −14.96
W52509 ARV1 homolog (S cerevisiae) ARV1 1q42.2 −14.95
H79753 Death-associated protein DAP 5p15.2 −14.93
BI905854 Glycerophosphodiester phosphodiesterase domain containing 3 GDPD3 16p11.2 −14.71
H53660 HLA-B associated transcript 3 BAT3 6p21.3 −14.71
AA037312 ATP synthase mitochondrial F1 complex assembly factor 1 ATPAF1 1p33-p32.3 −14.68
N57425 DAZ associated protein 2 DAZAP2 12q12 −14.67
BM545099 Lectin, galactoside-binding, soluble, 9 (galectin 9) LGALS9 17q11.1 −14.66
W16685 N-glycanase 1 NGLY1 3p24.2 −14.64
N76853 Golgi autoantigen, golgin subfamily b, macrogolgin GOLGB1 3q13 −14.59
AA001311 Hypothetical protein LOC129293 LOC129293 2p11.2 −14.54
W40439 Forkhead box J1 FOXJ1 17q22-q25 −14.44
H61030 REX2, RNA exonuclease 2 homolog (S cerevisiae) REXO2 11q23.1-q23.2 −14.39
H03728 G1 to S phase transition 1 GSPT1 16p13.1 −14.37
W48584 Procollagen-proline, 2-oxoglutarate 4-dioxygenase P4HA2 5q31 −14.30
BI861012 Mannosidase, alpha, class 1B, member 1 MAN1B1 9q34 −14.24
AA203133 DNA (cytosine-5-)-methyltransferase 1 DNMT1 19p13.2 −14.15
AA481714 Chromosome 6 open reading frame 62 C6orf62 6p22.2 −14.02
H08319 Zinc finger protein 783 ZNF783 7q36.1 −14.01
N44142 3-hydroxy-3-methylglutaryl-coenzyme A reductase HMGCR 5q13.3-q14 −13.97
R15789 Tumor suppressing subtransferable candidate 1 TSSC1 2p25.3 −13.97
H79770 Tripartite motif-containing 27 TRIM27 6p22 −13.93
AI056197 Amidohydrolase domain containing 2 AMDHD2 16p13.3 −13.92
BE871226 TAF6 RNA polymerase II TAF6 7q22.1 −13.87
BM468475 Keratin 8 pseudogene 12 KRT8P12 3q26.1 −13.84
H10533 Plasminogen activator, tissue PLAT 8p12 −13.82
H93653 Collagen-like tail subunit of asymmetric acetylcholinesterase COLQ 3p25 −13.82
BG333273 CD47 molecule CD47 3q13.1-q13.2 −13.80
H44717 Cytochrome c oxidase subunit 8A (ubiquitous) COX8A 11q12-q13 −13.79
W38526 Exostoses (multiple)-like 2 EXTL2 1p21 −13.75
R86053 Nuclear factor of kappa light polypeptide gene enhancer NFKB2 10q24 −13.71
AA203387 Trophinin associated protein (tastin) TROAP 12q13.12 −13.70
H52351 Transmembrane protein 150 TMEM150 2p11.2 −13.70
W47015 Ts translation elongation factor, mitochondrial TSFM 12q13-q14 −13.60
T89583 Spermatogenesis associated 21 SPATA21 1p36.13 −13.59
BM993318 Ubiquitin specific peptidase 24 USP24 1p32.3 −13.58
W88434 Carboxypeptidase B2 (plasma) CPB2 13q14.11 −13.55
N48417 GA binding protein transcription factor, alpha subunit 60 kDa GABPA 21q21-q22.1|21q21.3 −13.53
H81801 Phosphatidylinositol 3,4,5-trisphosphate-dependent RAC exchanger 1 PREX1 20q13.13 −13.52
AI478910 FERM domain containing 6 FRMD6 14q22.1 −13.45
AA450143 WD repeat domain 27 WDR27 6q27 −13.41
H61757 ELK4, ETS-domain protein (SRF accessory protein 1) ELK4 1q32 −13.31
BM459914 Serine/threonine kinase 4 STK4 20q11.2-q13.2 −13.31
W60673 CREB regulated transcription coactivator 3 CRTC3 15q26.1 −13.28
R32668 Component of oligomeric golgi complex 3 COG3 13q14.12 −13.27
AA045300 CDC42 small effector 2 CDC42SE2 5q31.1 −13.17
W56454 Furin (paired basic amino acid cleaving enzyme) FURIN 15q26.1 −13.12
W61099 Chromosome X open reading frame 36 CXorf36   −13.06
AA037834 Methylmalonic aciduria (cobalamin deficiency) cblB type MMAB 12q24 −13.06
W90717 Solute carrier family 24 (sodium/potassium/calcium exchanger) SLC24A4 14q32.12 −13.05
N44262 Pecanex homolog (Drosophila) PCNX 14q24.2 −12.99
T70417 REC8 homolog (yeast) REC8 14q11.2-q12 −12.98
BE899110 Family with sequence similarity 105, member B FAM105B 5p15.2 −12.94
R06564 UDP-galactose-4-epimerase GALE 1p36-p35 −12.92
R50922 Neuroligin 4, X-linked NLGN4X Xp22.32-p22.31 −12.89
H15612 COX10 homolog, cytochrome c oxidase assembly protein COX10 17p12-p11.2 −12.88
R18433 Opioid binding protein/cell adhesion molecule-like OPCML 11q25 −12.85
AA143060 Melanoma associated antigen (mutated) 1 MUM1 19p13.3 −12.81
BF969700 Chromosome 12 open reading frame 35 C12orf35 12p11.21 −12.79
N43949 Mitogen-activated protein kinase kinase kinase kinase 4 MAP4K4 2q11.2-q12 −12.77
N71526 Inhibitor of kappa light polypeptide gene enhancer in B-cells IKBKB 8p11.2 −12.73
W78799 Nudix (nucleoside diphosphate linked moiety X)-type motif 13 NUDT13 10q22.1 −12.69
W20458 Tripartite motif-containing 59 TRIM59 3q26.1 −12.69
H89618 WNK lysine deficient protein kinase 1 WNK1 12p13.3 −12.67
R65820 SLC2A4 regulator SLC2A4RG 20q13.33 −12.61
R87913 Potassium voltage-gated channel, delayed-rectifier, subfamily S KCNS1 20q12 −12.60
N57603 Solute carrier organic anion transporter family, member 1C1 SLCO1C1 12p12.2 −12.55
AA045905 Forkhead box P1 FOXP1 3p14.1 −12.55
H29349 Abelson helper integration site 1 AHI1 6q23.3 −12.54
H08988 Ubiquitin specific peptidase 7 (herpes virus-associated) USP7 16p13.3 −12.43
R23677 Nucleolar protein 4 NOL4 18q12 −12.43
H46899 Adenosine deaminase, RNA-specific, B2 (RED2 homolog rat) ADARB2 10p15.3 −12.41
BI667959 Reticulon 1 RTN1 14q23.1 −12.39
BG323782 Coiled-coil domain containing 14 CCDC14 3q21.1 −12.36
R38905 Dihydropyrimidinase-like 5 DPYSL5 2p23.3 −12.35
N23456 Cytoglobin CYGB 17q25.3 −12.34
R11685 COP9 constitutive photomorphogenic homolog subunit 5 COPS5 8q13.2 −12.33
R06410 O-6-methylguanine-DNA methyltransferase MGMT 10q26 −12.31
H63698 N-acyl-phosphatidylethanolamine-hydrolyzing phospholipase D NAPE-PLD 7q22.1 −12.27
H93191 Ubiquitin specific peptidase 3 USP3 15q22.3 −12.26
AA069502 Hypothetical protein DKFZp434H1419 DKFZp434H1419 2q35 −12.24
AA043530 MORN repeat containing 2 MORN2 2p22.1 −12.21
N57339 LMBR1 domain containing 1 LMBRD1 6q13 −12.20
H40732 PPAR binding protein PPARBP 17q12-q21.1 −12.19
AI822112 Similar to SR protein related family member (rsr-1) LOC728676 1q42.13 −12.18
R12743 HECT domain containing 1 HECTD1 14q12 −12.14
N48445 RAB33A, member RAS oncogene family RAB33A Xq25 −12.13
H03305 Bromodomain containing 1 BRD1 22q13.33 −12.13
AA010089 Hypothetical protein LOC157860 LOC157860 8p11.23 −12.09
H93176 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 PFKFB3 10p14-p15 −12.07
R12649 Solute carrier family 13 (sodium-dependent dicarboxylate transporter) SLC13A3 20q12-q13.1 −12.05
R14154 Hypothetical protein LOC286063 LOC286063 8q11.21 −12.03
R61444 Thyroid adenoma associated THADA 2p21 −12.02
W17278 Solute carrier family 25 (mitochondrial oxodicarboxylate carrier) SLC25A21 14q11.2 −12.00
T77303 Leucine-rich repeat LGI family, member 2 LGI2 4p15.2 −11.98
AA043837 Coiled-coil domain containing 45 CCDC45 17q24.1 −11.93
R52735 THAP domain containing 8 THAP8 19q13.12 −11.92
W46207 UDP-Gal:betaGlcNAc beta 1,4- galactosyltransferase, polypeptide 1 B4GALT1 9p13 −11.79
BI914695 Immunoglobulin superfamily containing leucine-rich repeat 2 ISLR2 15q24.1 −11.78
BQ000722 Deoxyribonuclease I-like 1 DNASE1L1 Xq28 −11.73
N52657 MYC binding protein 2 MYCBP2 13q22 −11.68
AI340082 Sulfotransferase family 1E, estrogen-preferring, member 1 SULT1E1 4q13.1 −11.67
N54717 Acyl-coenzyme A binding domain containing 5 ACBD5 10p12.1 −11.67
R16400 Elongation factor, RNA polymerase II, 2 ELL2 5q15 −11.63
AA151264 ALS2 C-terminal like ALS2CL 3p21.31 −11.59
T80372 Calcium channel, voltage-dependent, alpha 2/delta subunit 2 CACNA2D2 3p21.3 −11.58
AW872398 Amphiphysin AMPH 7p14-p13 −11.53
H08101 Glutaminase 2 (liver, mitochondrial) GLS2 12q13 −11.51
AA134026 Ubiquitin-conjugating enzyme E2A (RAD6 homolog) UBE2A Xq24-q25 −11.49
R72472 HLA-B associated transcript 1 BAT1 6p21.3 −11.47
BM450631 Heat shock protein 90 kDa alpha (cytosolic), class A member 2 HSP90AA2 11p14.1 −11.45
AA534429 Chromosome 1 open reading frame 38 C1orf38 1p35.3 −11.44
BI753390 Amyloid beta (A4) precursor protein-binding, family A APBA2 15q11-q12 −11.44
BF112255 Tousled-like kinase 2 TLK2 17q23 −11.42
T78737 KIAA2026 KIAA2026 9p24.1 −11.42
R39428 Protein tyrosine phosphatase, receptor type, G PTPRG 3p21-p14 −11.40
N42943 PHD finger protein 17 PHF17 4q26-q27 −11.38
H86918 Pleckstrin homology domain containing, family B (evectins) PLEKHB1 11q13.5-q14.1 −11.38
R23434 Membrane-bound transcription factor peptidase, site 2 MBTPS2 Xp22.1-p22.2 −11.37
R17293 GLE1 RNA export mediator-like (yeast) GLE1L 9q34.11 −11.33
BI522504 Zinc finger protein 605 ZNF605 12q24.33 −11.29
AA056151 SEC24 related gene family, member C (S. cerevisiae) SEC24C 10q22.2 −11.28
AA055164 Low density lipoprotein receptor-related protein 6 LRP6 12p11-p13 −11.21
R27647 KIAA1333 KIAA1333 14q12 −11.18

* SAM assigns a score to each gene on the basis of a change in gene expression relative to the standard deviation of repeated measurements.

Table 3.

Main upregulated genes related to bone formation

Gene Function Effect Reference
STAT 3 Transcriptional factor, activation of the MAP kinase Bone turnover Itoh et al. [27]
HOXA 10 Activation of Runx2, alkaline phosphatase, osteocalcin, and bone sialoprotein Osteogenic response Hassan et al. [25]
AKT1 Suppression of osteoblasts apoptosis through inhibition of Fox03a and Bim; Mediation of the osteoblastic bone formation by IGF-1 and insulin. Bone formation Kawamura et al. [29]
CALM1 Signal transduction, stimuli to proliferation Bone formation Rhymer et al. [40]
P2RX7 Activation of P2RX7 receptors stimulates expression of osteoblast markers and enhances mineralization in cultures cells Promote osteogenesis Ohlendorff et al. [37]
FN1 Adhesion and migration cellular process Extracellular matrix stability; tissue healing Potts and Campbell [39]
COL1A2 Collagen 1α2, chain of the most abundant collagen in the human organism Extracellular matrix stability Antoniv et al. [6]
SPARC The most abundant noncollagenous protein in the bone tissue. Modulation of the cell-matrix interaction and production of the matrix Yan and Sage [47]
VCL Associated with the intercellular junctions between the cells and the matrix Anchorages the actin to the cellular membrane Ziegler et al. [49]
TIMP1 Inhibits collagen and other components of extracellular matrix degradation operated by the metalloproteinase Decrease matrix degradation Hatori et al. [26]

Table 4.

Main downregulated genes related to bone formation

Gene Function Effect Reference
MMP-11 Metallopeptidase with substrate specificity, including proteoglycans, lamini, and fibronectin Degradation of extracellular matrix Matziari et al. [35]
DUSP4 Inactivates the superfamily of MAP kinase Inhibition of proliferation and differentiation Caunt et al. [17]

In particular, PEMFs induced upregulation of several genes at the transcriptional level like STAT3, homeobox A10 (HOXA10), and V-akt murine thymoma viral oncogene homolog 1 (AKT1). Some genes acting at the transductional level also are upregulated including calmodulin (CALM1), activator protein 1 (AP-1), Nuclear factor kappaB (NF-KB), cAMP response element binding (CREB), and P2RX7 (Table 3). Several interesting overexpressed genes are components of cytoskeleton and involved in cell adhesion (Table 3). Examples are fibronectin (FN1) and vinculin (VCL). PEMF also increased the expression of genes encoding for collagenous and noncollagenous extracellular matrix proteins including collagen Type 1α2 (COL1A2), osteonectin (SPARC), and metallopeptidase inhibitor 1 (TIMP1) (Table 3).

Some genes downregulated by PEMFs are related to degradation of extracellular matrix (ECM) (Table 4), specifically, matrix metallopeptidase 11 (MMP11), or stromelysin 3 and dual specificity phosphatase 4 (DUSP4).

Discussion

The improvement of osteogenesis is important because of the wide clinical applications it may have. PEMFs reportedly restart osteogenesis in disorders in which it has stopped [34] and in disorders in which osteogenesis needs to be enhanced [32]. Although considerable basic and clinical research on PEMFs has been reported, their mechanism of action is not completely clear. Moreover, studies in the existing literature have so far focused only on a few aspects of cell activities [9, 10, 46], or they have been performed by using different types of signals in different experimental conditions [1, 9, 22, 23]. To address these limitations in the literature, we asked (1) whether PEMFs affected a wide array of genes in human osteoblastlike cells (MG63), and (2) whether and to what extent PEMFs induce proliferation and differentiation of osteoblasts.

We acknowledge several limitations. First, the experiment was performed using a human osteosarcoma cell line (MG63), whereas the use of a primary human osteoblast cell culture might better replicate what happens in humans in vivo. We chose the MG63 cell line because these cells show a phenotype similar to that of normal human osteoblasts, while also providing a reproducible experimental model suitable for the microarray analysis. Second, as it is still difficult to explain the roles of all genes, whose expression was modified, we focused on the role of genes with well-known functions related to osteogenesis. Third, although microarray technology is widely accepted as a valid approach to describe changes induced by a factor on cell environment, additional research using, for example RT-PCR, might be useful to provide supplementary support for the results obtained. Fourth, we studied responses at only one time. We chose 18 hours exposure time on the basis of a previous time experiment, in which a peak in DNA synthesis was seen after 18 hours of stimulation in MG63 cultures maintained in the presence of 10% FCS [45]. In contrast, Lohmann et al. reported PEMFs enhanced cell differentiation in MG63 cultures and reduced cell proliferation [30]. The differences existing between the two sets of data regarding cell proliferation could be related to the different experimental conditions used. Lohmann et al. exposed MG63 cultures when they reached confluence. When cultures are confluent they stop to proliferate. We exposed cells to PEMF when cultures were subconfluent, therefore, they responded with an enhancement of proliferation. We cannot extrapolate our findings to shorter or longer exposures to PEMFs.

PEMFs appear to act on bone formation by inducing upregulation of several genes related to osteoblast proliferation and differentiation. Among those genes, HOXA10, a transcriptional factor that acts positively on RUNX2, is the main transcriptional regulator of osteoblast differentiation [25]. HOXA10 controls osteoblastogenesis via RUNX2-promoted osteoprogenitor cell differentiation in immature osteoblasts [25]. This protein also is believed to be involved in activation of alkaline phosphatase, osteocalcin, and sialoprotein genes [25]. We also observed STAT3, P2RX7, and AKT1 upregulation. It has been suggested that osteoblast-specific disruption of STAT3 results in an osteopenic phenotype [27, 41]. STAT3, involved in bone turnover [27], regulates the transcription of various genes that modulate cell proliferation and differentiation in a cell-specific manner [27]. P2RX7 is a purinergic receptor, which is correlated with calcium channels and interacts with the calmodulin-dependent protein [37]. Activation of P2RX7 receptors by exogenous nucleotides stimulates expression of osteoblast markers and enhances mineralization in cultures of rat calvarial cells promoting osteogenesis [37]. V-akt murine thymoma viral oncogene homolog 1 (AKT1), is a phosphoinositide-dependent serine-threonine protein kinase, and one of the key players in the signaling of potent bone anabolic factors [29]. The disruption of AKT1 in mice led to low-turnover osteopenia through dysfunction [29]. AKT1 deficiency causes decreased bone mass and formation [29], impairs RUNX2-dependent differentiation and function of osteoblasts [29], and impairs bone resorption via dysfunction of osteoblasts and osteoclasts [29]. AKT1 suppresses osteoblasts apoptosis through inhibition of FOXO3a and Bim [29], and may mediate the osteoblastic bone formation by IGF-1 [29]. The IGF-1/AKT1 pathway might be a common pathway for bone anabolic action of parathyroid, thyroid, and growth hormone [29].

We also observed upregulation of genes involved in connective and bone tissue formation (COL1A2) and noncollagenous extracellular matrix (ECM) synthesis (SPARC, FN1, VCL). COL1A2 encodes for collagen Type 1α2. Collagen Type 1 is the most represented collagen in the human organism and is important for ECM stability [6]. Osteonectin (SPARC), the most abundant noncollagenous protein in bone tissue, modulates cell-matrix interaction and is involved in the tissue-remodeling process [47]. FN1 is important for ECM stability and involved in adhesion and migration cellular processes such as tissue healing [39]. VCL is a cytoskeletal protein associated with the intercellular junctions between the cells and the matrix [49].

The effect of TIMP1 upregulation and of MMP-11 and DUSP4 downregulation can be interpreted as a decrease in the degradation process. TIMP1 promotes apposition of ECM by inhibiting collagen and other components of ECM degradation operated by the metalloproteinase [26]. DUSP4 inactivates the superfamily of MAP kinase, which is involved with proliferation and differentiation. DUSP4 downregulation, then, stimulates proliferation [17]. MMPs potentially can degrade almost all components of the periprosthetic ECM and contribute to prosthetic loosening and osteolysis through pathologic ECM degradation and bone remodeling around prostheses [28, 35]. The stromelysins especially have broad substrate specificity, including proteoglycans, laminin, and fibronectin [35]. Stromelysin-1 determines the release and activation ECM-bound latent TGF-ß1 and is involved with ECM turnover [8]. Upregulation of CALM1 promotes enhancement of calmodulin1, a protein involved in proliferative cell activation [40]. Calmodulin also is involved in the transduction mechanism of PEMFs [9].

Our data suggest many effects of PEMFs on human osteoblastlike cells in vitro. PEMFs seem to exert an anabolic effect on cells. In particular, they are consistent with abundant preclinical and clinical findings showing a positive effect of PEMFs on osteogenesis. Stimulation by PEMFs induces bone healing in patients, shortens the time of healing processes, and stimulates healing of nonunions. Exposure to PEMFs acts on cell behavior in different ways. More specifically, PEMFs stimulate cell proliferation and induce osteoblastogenesis and differentiation of osteoblasts. Moreover, PEMFs promote ECM apposition and mineralization, and decrease degradation and absorption processes of ECM. These data suggest a more comprehensive explanation of the observed clinical effect of PEMFs on the induction of osteogenesis. Given their broad effects, PEMFs might be useful in other fields such as regenerative medicine.

Footnotes

Each author certifies that he or she has no commercial associations (eg, consultancies, stock ownership, equity interest, patent/licensing arrangements, etc) that might pose a conflict of interest in connection with the submitted article.

One of more of the authors received (VS, FC, LM) grants from Regione Emilia Romagna (Istituto Ortopedico Rizzoli, Bologna) for the study of bone regeneration and from the University of Ferrara.

This work was performed at Istituto di Clinica Ortopedica Università di Ferrara.

References

  • 1.Aaron RK, Boyan BD, Ciombor DM, Schwartz Z, Simon BJ. Stimulation of growth factor synthesis by electric and electromagnetic fields. Clin Orthop Relat Res. 2004;419:30–37. doi: 10.1097/00003086-200402000-00006. [DOI] [PubMed] [Google Scholar]
  • 2.Aaron RK, Ciombor DM. Acceleration of experimental endochondral ossification by biophysical stimulation of the progenitor cell pool. J Orthop Res. 1996;14:582–589. doi: 10.1002/jor.1100140412. [DOI] [PubMed] [Google Scholar]
  • 3.Aaron RK, Ciombor DM, Jolly G. Stimulation of experimental endochondral ossification by low-energy pulsing electromagnetic fields. J Bone Miner Res. 1989;4:227–233. doi: 10.1002/jbmr.5650040215. [DOI] [PubMed] [Google Scholar]
  • 4.Aaron RK, Ciombor DM, Keeping H, Wang S, Capuano A, Polk C. Power frequency fields promote cell differentiation coincident with an increase in transforming growth factor-beta(1) expression. Bioelectromagnetics. 1999;20:453–458. doi: 10.1002/(SICI)1521-186X(199910)20:7<453::AID-BEM7>3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
  • 5.Aaron RK, Lennox D, Bunce GE, Ebert T. The conservative treatment of osteonecrosis of the femoral head: a comparison of core decompression and pulsing electromagnetic fields. Clin Orthop Relat Res. 1989;249:209–218. [PubMed] [Google Scholar]
  • 6.Antoniv TT, Tanaka S, Sudan B, Val S, Liu K, Wang L, Wells DJ, Bou-Gharios G, Ramirez F. Identification of a repressor in the first intron of the human alpha2(I) collagen gene (COL1A2) J Biol Chem. 2005;280:35417–35423. doi: 10.1074/jbc.M502681200. [DOI] [PubMed] [Google Scholar]
  • 7.Bassett CA, Mitchell SN, Gaston SR. Treatment of ununited tibial diaphyseal fractures with pulsing electromagnetic fields. J Bone Joint Surg Am. 1981;63:511–523. [PubMed] [Google Scholar]
  • 8.Boyan BD, Schwartz Z. 1,25-Dihydroxy vitamin D3 is an autocrine regulator of extracellular matrix turnover and growth factor release via ERp60-activated matrix vesicle matrix metalloproteinases. Cells Tissues Organs. 2009;189:70–74. doi: 10.1159/000152916. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Brighton CT, Wang W, Seldes R, Zhang G, Pollack SR. Signal transduction in electrically stimulated bone cells. J Bone Joint Surg Am. 2001;83:1514–1523. doi: 10.2106/00004623-200110000-00009. [DOI] [PubMed] [Google Scholar]
  • 10.Cadossi R, Bersani F, Cossarizza A, Zucchini P, Emilia G, Torelli G, Franceschi C. Lymphocytes and low-frequency electromagnetic fields. FASEB J. 1992;6:2667–2674. doi: 10.1096/fasebj.6.9.1612290. [DOI] [PubMed] [Google Scholar]
  • 11.Capanna R, Donati D, Masetti C, Manfrini M, Panozzo A, Cadossi R, Campanacci M. Effect of electromagnetic fields on patients undergoing massive bone graft following bone tumor resection: a double blind study. Clin Orthop Relat Res. 1994;306:213–221. [PubMed] [Google Scholar]
  • 12.Carinci F, Pezzetti F, Volinia S, Francioso F, Arcelli D, Farina E, Piattelli A. Zirconium oxide: analysis of MG63 osteoblast-like cell response by means of a microarray technology. Biomaterials. 2004;25:215–228. doi: 10.1016/S0142-9612(03)00486-1. [DOI] [PubMed] [Google Scholar]
  • 13.Carinci F, Pezzetti F, Volinia S, Francioso F, Arcelli D, Marchesini J, Caramelli E, Piattelli A. Analysis of MG63 osteoblastic-cell response to a new nanoporous implant surface by means of a microarray technology. Clin Oral Implants Res. 2004;15:180–186. doi: 10.1111/j.1600-0501.2004.00997.x. [DOI] [PubMed] [Google Scholar]
  • 14.Carinci F, Pezzetti F, Volinia S, Laino G, Arcelli D, Caramelli E, Degidi M, Piattelli A. P-15 cell-binding domain derived from collagen: analysis of MG63 osteoblastic-cell response by means of a microarray technology. J Periodontol. 2004;75:66–83. doi: 10.1902/jop.2004.75.1.66. [DOI] [PubMed] [Google Scholar]
  • 15.Carinci F, Piattelli A, Stabellini G, Palmieri A, Scapoli L, Laino G, Caputi S, Pezzetti F. Calcium sulfate: analysis of MG63 osteoblast-like cell response by means of a microarray technology. J Biomed Mater Res B Appl Biomater. 2004;71:260–267. doi: 10.1002/jbm.b.30133. [DOI] [PubMed] [Google Scholar]
  • 16.Carinci F, Volinia S, Pezzetti F, Francioso F, Tosi L, Piattelli A. Titanium-cell interaction: analysis of gene expression profiling. J Biomed Mater Res B Appl Biomater. 2003;66:341–346. doi: 10.1002/jbm.b.10021. [DOI] [PubMed] [Google Scholar]
  • 17.Caunt CJ, Rivers CA, Conway-Campbell BL, Norman MR, McArdle CA. Epidermal growth factor receptor and protein kinase C signaling to ERK2: spatiotemporal regulation of ERK2 by dual specificity phosphatases. J Biol Chem. 2008;283:6241–6252. doi: 10.1074/jbc.M706624200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Ciombor DM, Aaron RK, Wang S, Simon B. Modification of osteoarthritis by pulsed electromagnetic field: a morphological study. Osteoarthritis Cartilage. 2003;11:455–462. doi: 10.1016/S1063-4584(03)00083-9. [DOI] [PubMed] [Google Scholar]
  • 19.Clark AN, Youkey R, Liu X, Jia L, Blatt R, Day YJ, Sullivan GW, Linden J, Tucker AL. A1 adenosine receptor activation promotes angiogenesis and release of VEGF from monocytes. Circ Res. 2007;101:1130–1138. doi: 10.1161/CIRCRESAHA.107.150110. [DOI] [PubMed] [Google Scholar]
  • 20.Mattei M, Caruso A, Traina GC, Pezzetti F, Baroni T, Sollazzo V. Correlation between pulsed electromagnetic fields exposure time and cell proliferation increase in human osteosarcoma cell lines and human normal osteoblast cells in vitro. Bioelectromagnetics. 1999;20:177–182. doi: 10.1002/(SICI)1521-186X(1999)20:3<177::AID-BEM4>3.0.CO;2-#. [DOI] [PubMed] [Google Scholar]
  • 21.Mattei M, Varani K, Masieri FF, Pellati A, Ongaro A, Fini M, Cadossi R, Vincenzi F, Borea PA, Caruso A. Adenosine analogs and electromagnetic fields inhibit prostaglandin E2 release in bovine synovial fibroblasts. Osteoarthritis Cartilage. 2009;17:252–262. doi: 10.1016/j.joca.2008.06.002. [DOI] [PubMed] [Google Scholar]
  • 22.Fassina A, Vasai L, Benazzo F, Benedetti L, Calligaro A, Angelis MG, Farina A, Maliardi V, Magenes G. Effects of electromagnetic stimulation on calcified matrix production by SAOS-2 cells over a polyurethane porous scaffold. Tissue Eng. 2006;12:1985–1999. doi: 10.1089/ten.2006.12.1985. [DOI] [PubMed] [Google Scholar]
  • 23.Fitzsimmons RG, Ryaby JT, Magee FP, Baylink DJ. IGF-II receptor number is increased in TE-85 osteosarcoma cells by combined magnetic fields. J Bone Miner Res. 1995;10:812–819. doi: 10.1002/jbmr.5650100519. [DOI] [PubMed] [Google Scholar]
  • 24.Goodman EM, Greenebaum B, Marron MT. Effects of electromagnetic fields on molecules and cells. Int Rev Cytol. 1995;158:279–338. doi: 10.1016/S0074-7696(08)62489-4. [DOI] [PubMed] [Google Scholar]
  • 25.Hassan MQ, Tare R, Lee SH, Mandeville M, Weiner B, Montecino M, Wijnen AJ, Stein JL, Stein GS, Lian JB. HOXA10 controls osteoblastogenesis by directly activating bone regulatory and phenotypic genes. Mol Cell Biol. 2007;27:3337–3352. doi: 10.1128/MCB.01544-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Hatori K, Sasano Y, Takahashi I, Kamakura S, Kagayama M, Sasaki K. Osteoblasts and osteocytes express MMP2 and -8 and TIMP1, -2, and -3 along with extracellular matrix molecules during appositional bone formation. Anat Rec A Discov Mol Cell Evol Biol. 2004;277:262–271. doi: 10.1002/ar.a.20007. [DOI] [PubMed] [Google Scholar]
  • 27.Itoh S, Udagawa N, Takahashi N, Yoshitake F, Narita H, Ebisu S, Ishihara K. A critical role for interleukin-6 family-mediated Stat3 activation in osteoblast differentiation and bone formation. Bone. 2006;39:505–512. doi: 10.1016/j.bone.2006.02.074. [DOI] [PubMed] [Google Scholar]
  • 28.Jones GC, Riley GP. ADAMTS proteinases: a multi-domain, multi-functional family with roles in extracellular matrix turnover and arthritis. Arthritis Res Ther. 2005;7:160–169. doi: 10.1186/ar1783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Kawamura N, Kugimiya F, Oshima Y, Ohba S, Ikeda T, Saito T, Shinoda Y, Kawasaki Y, Ogata N, Hoshi K, Akiyama T, Chen WS, Hay N, Tobe K, Kadowaki T, Azuma Y, Tanaka S, Nakamura K, Chung UI, Kawaguchi H. Akt1 in osteoblasts and osteoclasts controls bone remodelling. PloS ONE. 2007;2:e1058. doi: 10.1371/journal.pone.0001058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Lohmann CH, Schwartz Z, Liu Y, Guerkov H, Dean DD, Simon B, Boyan BD. Pulsed electromagnetic field stimulation of MG63 osteoblast-like cells affects differentiation and local factor production. J Orthop Res. 2000;18:637–646. doi: 10.1002/jor.1100180417. [DOI] [PubMed] [Google Scholar]
  • 31.Luben RA, Cain CD, Chen MC, Rosen DM, Adey WR. Effects of electromagnetic stimuli on bone and bone cells in vitro: inhibition of responses to parathyroid hormone by low-energy, low-frequency fields. Proc Natl Acad Sci USA. 1982;79:4180–4184. doi: 10.1073/pnas.79.13.4180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Mammi GI, Rocchi R, Cadossi R, Massari L, Traina GC. The electrical stimulation of tibial osteotomies: double-blind study. Clin Orthop Relat Res. 1993;288:246–253. [PubMed] [Google Scholar]
  • 33.Massari L, Benazzo F, Mattei M, Setti S, Fini M, CRES Study Group Effects of electrical physical stimuli on articular cartilage. J Bone Joint Surg Am. 2007;899((suppl 3)):152–161. doi: 10.2106/JBJS.G.00581. [DOI] [PubMed] [Google Scholar]
  • 34.Massari L, Fini M, Cadossi R, Setti S, Traina GC. Biophysical stimulation with pulsed electromagnetic fields in osteonecrosis of the femoral head. J Bone Joint Surg Am. 2006;88(suppl 3):56–60. doi: 10.2106/JBJS.F.00536. [DOI] [PubMed] [Google Scholar]
  • 35.Matziari M, Dive V, Yiotakis A. Matrix metalloproteinase 11 (MMP-11; stromelysin-3) and synthetic inhibitors. Med Res Rev. 2007;27:528–552. doi: 10.1002/med.20066. [DOI] [PubMed] [Google Scholar]
  • 36.Mooney V. A randomized double-blind prospective study of the efficacy of pulsed electromagnetic fields for interbody lumbar fusions. Spine (Phila PA 1976) 1990;15:708–712. doi: 10.1097/00007632-199007000-00016. [DOI] [PubMed] [Google Scholar]
  • 37.Ohlendorff SD, Tofteng CL, Jensen JE, Petersen S, Civitelli R, Fenger M, Abrahamsen B, Hermann AP, Eiken P, Jørgensen NR. Single nucleotide polymorphisms in the P2X7 gene are associated to fracture risk and to effect of estrogen treatment. Pharmacogenet Genomics. 2007;17:555–567. doi: 10.1097/FPC.0b013e3280951625. [DOI] [PubMed] [Google Scholar]
  • 38.Pezzetti F, Mattei M, Caruso A, Cadossi R, Zucchini P, Carinci F, Traina GC, Sollazzo V. Effects of pulsed electromagnetic fields on human chondrocytes: an in vitro study. Calcif Tissue Int. 1999;65:396–401. doi: 10.1007/s002239900720. [DOI] [PubMed] [Google Scholar]
  • 39.Potts JR, Campbell ID. Structure and function of fibronectin modules. Matrix Biol. 1996;15:313–320. doi: 10.1016/S0945-053X(96)90133-X. [DOI] [PubMed] [Google Scholar]
  • 40.Rhymer JA, Ottiger M, Wicki R, Greenwood TM, Strehler EE. Structure of the human CALM1 calmodulin gene and identification of two CALM1-related pseudogenes CALM1P1 and CALM1P2. Eur J Biochem. 1994;225:71–82. doi: 10.1111/j.1432-1033.1994.00071.x. [DOI] [PubMed] [Google Scholar]
  • 41.Scott MJ, Godshall CJ, Cheadle WG. Jaks, STATs, cytokines, and sepsis. Clin Diagn Lab Immunol. 2002;9:1153–1159. doi: 10.1128/CDLI.9.6.1153-1159.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Sharrard WJ. A double-blind trial of pulsed electromagnetic fields for delayed union of tibial fractures. J Bone Joint Surg Br. 1990;72:347–355. doi: 10.1302/0301-620X.72B3.2187877. [DOI] [PubMed] [Google Scholar]
  • 43.Simon R, Lam A, Li MC, Ngan M, Menenzes S, Zhao Y. Analysis of gene expression data using BRB-array tools. Cancer Inform. 2007;3:11–17. [PMC free article] [PubMed] [Google Scholar]
  • 44.Sollazzo V, Massari L, Caruso C, Mattei M, Pezzetti P. Effects of low-frequency pulsed electromagnetic fields on human osteoblast-like cells in vitro. Electro- and Magnetobiology. 1996;15:75–83. [Google Scholar]
  • 45.Sollazzo V, Traina GC, DeMattei M, Pellati A, Pezzetti F, Caruso A. Responses of human MG-63 osteosarcoma cell line and human osteoblast-like cells to pulsed electromagnetic fields. Bioelectromagnetics. 1997;18:541–547. doi: 10.1002/(SICI)1521-186X(1997)18:8<541::AID-BEM2>3.0.CO;2-2. [DOI] [PubMed] [Google Scholar]
  • 46.Varani K, Gessi S, Merighi S, Iannotta V, Cattabriga E, Spisani S, Cadossi R, Borea PA. Effect of low frequency electromagnetic fields on A2A adenosine receptors in human neutrophils. Br J Pharmacol. 2002;136:57–66. doi: 10.1038/sj.bjp.0704695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Yan Q, Sage EH. SPARC, a matricellular glycoprotein with important biological functions. J Histochem Cytochem. 1999;47:1495–1506. doi: 10.1177/002215549904701201. [DOI] [PubMed] [Google Scholar]
  • 48.Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA. 2001;98:5116–5121. doi: 10.1073/pnas.091062498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Ziegler WH, Liddington RC, Critchley DR. The structure and regulation of vinculin. Trends Cell Biol. 2006;16:453–460. doi: 10.1016/j.tcb.2006.07.004. [DOI] [PubMed] [Google Scholar]

Articles from Clinical Orthopaedics and Related Research are provided here courtesy of The Association of Bone and Joint Surgeons

RESOURCES