Abstract
Cells of Escherichia coli ML308-225, harvested from the exponential phase, were heated in 50 mM potassium phosphate, and the loss in viability and inability to transport lactose, proline, and alpha-methylglucoside was compared. After cells were heated at 48 degrees C for 15 min, there was a 16% loss in viability and a similarly small reduction in the steady-state accumulation of lactose at 25 degrees C. The initial rates of lactose and proline transport were severely inhibited by heating at either 48 or 50 degrees C, but substantial recovery occurred within 5 to 7 min at 25 degrees C. Heating at 50 degrees C for 15 min caused an 86% loss in viability, but only a 53% decrease in the steady-state accumulation of lactose and only a 24% reduction in the initial rate of alpha-methylglucoside uptake. Twice as much alpha-methylglucoside was accumulated at 50 degrees C as at 25 degrees C. Although alpha-methylglucoside phosphate leaked from the cells at 50 degrees C, the concentration retained within the cells was about 500 times that externally, when only about 14% of the cells were viable. Overall, these results indicate that cells made nonviable by heating at 50 degrees C still have significant membrane integrity.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allwood M. C., Hugo W. B. The leakage of cations and amino acids from Staphylococcus aureus exposed to moist heat, phenol and dinitrophenol. J Appl Bacteriol. 1971 Jun;34(2):369–375. doi: 10.1111/j.1365-2672.1971.tb02296.x. [DOI] [PubMed] [Google Scholar]
- Allwood M. C., Russell A. D. Mechanism of Thermal Injury in Staphylococcus aureus: I. Relationship Between Viability and Leakage. Appl Microbiol. 1967 Nov;15(6):1266–1269. doi: 10.1128/am.15.6.1266-1269.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Allwood M. C., Russell A. D. Mechanisms of thermal injury in nonsporulating bacteria. Adv Appl Microbiol. 1970;12:89–119. doi: 10.1016/s0065-2164(08)70583-5. [DOI] [PubMed] [Google Scholar]
- Allwood M. C., Russell A. D. The leakage of intracellular constituents from heated suspensions of Staphylococcus aureus. Experientia. 1967 Oct 15;23(10):878–879. doi: 10.1007/BF02146908. [DOI] [PubMed] [Google Scholar]
- Allwood M. C., Russell A. D. Thermally induced ribonucleic acid degradation and leakage of substances from the metabolic pool in Staphylococcus aureus. J Bacteriol. 1968 Feb;95(2):345–349. doi: 10.1128/jb.95.2.345-349.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clark C. W., Ordal Z. J. Thermal injury and recovery of Salmonella typhimurium and its effect on enumeration procedures. Appl Microbiol. 1969 Sep;18(3):332–336. doi: 10.1128/am.18.3.332-336.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DAVIS B. D., MINGIOLI E. S. Mutants of Escherichia coli requiring methionine or vitamin B12. J Bacteriol. 1950 Jul;60(1):17–28. doi: 10.1128/jb.60.1.17-28.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gachelin G. Studies on the alpha-methylglucoside permease of Escherichia coli. A two-step mechanism for the accumulation of alpha-methylglucoside 6-phosphate. Eur J Biochem. 1970 Oct;16(2):342–357. doi: 10.1111/j.1432-1033.1970.tb01088.x. [DOI] [PubMed] [Google Scholar]
- Gray R. J., Witter L. D., Ordal Z. J. Characterization of mild thermal stress in Pseudomonas fluorescens and its repair. Appl Microbiol. 1973 Jul;26(1):78–85. doi: 10.1128/am.26.1.78-85.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hong J. S., Kaback H. R. Mutants of Salmonella typhimurium and Escherichia coli pleiotropically defective in active transport. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3336–3340. doi: 10.1073/pnas.69.11.3336. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hurst A., Hughes A., Collins-Thompson D. L., Shah B. G. Relationship between loss of magnesium and loss of salt tolerance after sublethal heating of Staphylococcus aureus. Can J Microbiol. 1974 Aug;20(8):1153–1158. doi: 10.1139/m74-178. [DOI] [PubMed] [Google Scholar]
- Iandolo J. J., Ordal Z. J. Repair of thermal injury of Staphylococcus aureus. J Bacteriol. 1966 Jan;91(1):134–142. doi: 10.1128/jb.91.1.134-142.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaback H. R., Barnes E. M., Jr Mechanisms of active transport in isolated membrane vesicles. II. The mechanism of energy coupling between D-lactic dehydrogenase and beta-galactoside transport in membrane preparations from Escherichia coli. J Biol Chem. 1971 Sep 10;246(17):5523–5531. [PubMed] [Google Scholar]
- Kaback H. R. The role of the phosphoenolpyruvate-phosphotransferase system in the transport of sugars by isolated membrane preparations of Escherichia coli. J Biol Chem. 1968 Jul 10;243(13):3711–3724. [PubMed] [Google Scholar]
- Kaback H. R. Transport across isolated bacterial cytoplasmic membranes. Biochim Biophys Acta. 1972 Aug 4;265(3):367–416. doi: 10.1016/0304-4157(72)90014-7. [DOI] [PubMed] [Google Scholar]
- Kusch M., Wilson T. H. Defective lactose utilization by a mutant of Escherichia coli energy-uncoupled for lactose transport. The advantages of active transport versus facilitated diffusion. Biochim Biophys Acta. 1973 Jun 7;311(1):109–122. doi: 10.1016/0005-2736(73)90259-9. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lombardi F. J., Kaback H. R. Mechanisms of active transport in isolated bacterial membrane vesicles. 8. The transport of amino acids by membranes prepared from Escherichia coli. J Biol Chem. 1972 Dec 25;247(24):7844–7857. [PubMed] [Google Scholar]
- POSTGATE J. R., HUNTER J. R. The survival of starved bacteria. J Gen Microbiol. 1962 Oct;29:233–263. doi: 10.1099/00221287-29-2-233. [DOI] [PubMed] [Google Scholar]
- Pierson M. D., Ordal Z. J. The transport of methyl-alpha-D-glucopyranoside by thermally stressed Salmonella typhimurium. Biochem Biophys Res Commun. 1971 Apr 16;43(2):378–383. doi: 10.1016/0006-291x(71)90764-9. [DOI] [PubMed] [Google Scholar]
- Russell A. D., Harries D. Damage to Escherichia coli on exposure to moist heat. Appl Microbiol. 1968 Sep;16(9):1394–1399. doi: 10.1128/am.16.9.1394-1399.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Russell A. D., Harries D. Some aspects of thermal injury in Escherichia coli. Appl Microbiol. 1967 Mar;15(2):407–410. doi: 10.1128/am.15.2.407-410.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schachter D., Mindlin A. J. Dual influx model of thiogalactoside accumulation in Escherichia coli. J Biol Chem. 1969 Apr 10;244(7):1808–1816. [PubMed] [Google Scholar]
- Shechter E., Gulik-Krzywicki T., Kaback H. R. Correlations between fluorescence, x-ray diffraction, and physiological properties in cytoplasmic membrane vesicles isolated from Escherichia coli. Biochim Biophys Acta. 1972 Aug 9;274(2):466–477. doi: 10.1016/0005-2736(72)90192-7. [DOI] [PubMed] [Google Scholar]
- Tomlins R. I., Ordal Z. J. Requirements of Salmonella typhimurium for recovery from thermal injury. J Bacteriol. 1971 Feb;105(2):512–518. doi: 10.1128/jb.105.2.512-518.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tomlins R. I., Vaaler G. L., Ordal Z. J. Lipid biosynthesis during the recovery of Salmonella typhimurium from thermal injury. Can J Microbiol. 1972 Jul;18(7):1015–1021. doi: 10.1139/m72-158. [DOI] [PubMed] [Google Scholar]
- Winkler H. H., Wilson T. H. The role of energy coupling in the transport of beta-galactosides by Escherichia coli. J Biol Chem. 1966 May 25;241(10):2200–2211. [PubMed] [Google Scholar]
