Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1980 Jul;40(1):7–12. doi: 10.1128/aem.40.1.7-12.1980

R-Plasmid Transfer in Zymomonas mobilis

Mary L Skotnicki 1, David E Tribe 1, Peter L Rogers 1
PMCID: PMC291517  PMID: 16345598

Abstract

Conjugal transfer of three IncP1 plasmids and one IncFII plasmid into strains of the ethanol-producing bacterium Zymomonas mobilis was obtained. These plasmids were transferred at high frequencies from Escherichia coli and Pseudomonas aeruginosa into Z. mobilis and also between different Z. mobilis strains, using the membrane filter mating technique. Most of the plasmids were stably maintained in Z. mobilis, although there was some evidence of delayed marker expression. A low level of chromosomal gene transfer, mediated by plasmid R68.45, was detected between Z. mobilis strains. Genetic evidence suggesting that Z. mobilis may be more closely related to E. coli than to Pseudomonas or Rhizobium is discussed.

Full text

PDF
10

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beringer J. E., Hopwood D. A. Chromosomal recombination and mapping in Rhizobium leguminosarum. Nature. 1976 Nov 18;264(5583):291–293. doi: 10.1038/264291a0. [DOI] [PubMed] [Google Scholar]
  2. Beringer J. E. R factor transfer in Rhizobium leguminosarum. J Gen Microbiol. 1974 Sep;84(1):188–198. doi: 10.1099/00221287-84-1-188. [DOI] [PubMed] [Google Scholar]
  3. Boucher C., Bergeron B., De Bertalmio M. B., Dénarié J. Introduction of bacteriophage Mu into Pseudomonas solanacearum and Rhizobium meliloti using the R factor RP4. J Gen Microbiol. 1977 Jan;98(1):253–263. doi: 10.1099/00221287-98-1-253. [DOI] [PubMed] [Google Scholar]
  4. Cooke M., Meynell E. Chromosomal transfer mediated by de-repressed R factors in F- Escherichia coli K12. Genet Res. 1969 Aug;14(1):79–87. doi: 10.1017/s0016672300001877. [DOI] [PubMed] [Google Scholar]
  5. Cooke M., Meynell E., Lawn A. M. Mutant Hfr strains defective in transfer: restoration by F-like and I-like de-repressed R factors. Genet Res. 1970 Aug;16(1):101–112. doi: 10.1017/s0016672300002317. [DOI] [PubMed] [Google Scholar]
  6. Datta N., Hedges R. W. Host ranges of R factors. J Gen Microbiol. 1972 May;70(3):453–460. doi: 10.1099/00221287-70-3-453. [DOI] [PubMed] [Google Scholar]
  7. Datta N., Hedges R. W., Shaw E. J., Sykes R. B., Richmond M. H. Properties of an R factor from Pseudomonas aeruginosa. J Bacteriol. 1971 Dec;108(3):1244–1249. doi: 10.1128/jb.108.3.1244-1249.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DeMOSS R. D., GIBBS M. Ethanol formation in Pseudomonas lindneri. Arch Biochem Biophys. 1951 Dec;34(2):478–479. doi: 10.1016/0003-9861(51)90028-8. [DOI] [PubMed] [Google Scholar]
  9. Dixon R., Cannon F., Kondorosi A. Construction of a P plasmid carrying nitrogen fixation genes from Klebsiella pneumoniae. Nature. 1976 Mar 18;260(5548):268–271. doi: 10.1038/260268a0. [DOI] [PubMed] [Google Scholar]
  10. ENTNER N., DOUDOROFF M. Glucose and gluconic acid oxidation of Pseudomonas saccharophila. J Biol Chem. 1952 May;196(2):853–862. [PubMed] [Google Scholar]
  11. GIBBS M., DEMOSS R. D. Anaerobic dissimilation of C14-labeled glucose and fructose by Pseudomonas lindneri. J Biol Chem. 1954 Apr;207(2):689–694. [PubMed] [Google Scholar]
  12. Haas D., Holloway B. W. R factor variants with enhanced sex factor activity in Pseudomonas aeruginosa. Mol Gen Genet. 1976 Mar 30;144(3):243–251. doi: 10.1007/BF00341722. [DOI] [PubMed] [Google Scholar]
  13. Holloway B. W. Plasmids that mobilize bacterial chromosome. Plasmid. 1979 Jan;2(1):1–19. doi: 10.1016/0147-619x(79)90002-7. [DOI] [PubMed] [Google Scholar]
  14. Kleckner N., Roth J., Botstein D. Genetic engineering in vivo using translocatable drug-resistance elements. New methods in bacterial genetics. J Mol Biol. 1977 Oct 15;116(1):125–159. doi: 10.1016/0022-2836(77)90123-1. [DOI] [PubMed] [Google Scholar]
  15. Kuykendall L. D. Transfer of R factors to and between genetically marked sublines of Rhizobium japonicum. Appl Environ Microbiol. 1979 May;37(5):862–866. doi: 10.1128/aem.37.5.862-866.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. MILLIS N. F. A study of the cider-sickness bacillus; a new variety of Zymomonas anaerobia. J Gen Microbiol. 1956 Dec;15(3):521–528. doi: 10.1099/00221287-15-3-521. [DOI] [PubMed] [Google Scholar]
  17. Mergeay M., Gerits J. F'-plasmid transfer from Escherichia coli to Pseudomonas fluorescens. J Bacteriol. 1978 Jul;135(1):18–28. doi: 10.1128/jb.135.1.18-28.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Moody E. E., Hayes W. Chromosome transfer by autonomous transmissible plasmids: the role of the bacterial recombination (rec) system. J Bacteriol. 1972 Jul;111(1):80–85. doi: 10.1128/jb.111.1.80-85.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Skotnicki M. L., Rolfe B. G. Transfer of nitrogen fixation genes from a bacterium with the characteristics of both Rhizobium and Agrobacterium. J Bacteriol. 1978 Feb;133(2):518–526. doi: 10.1128/jb.133.2.518-526.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Swings J., De Ley J. The biology of Zymomonas. Bacteriol Rev. 1977 Mar;41(1):1–46. doi: 10.1128/br.41.1.1-46.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. de Lima O. G., Schumacher I. E., de Araújo J. M. Novas observaçes sôbre a aço antagonista dy Zymomonas mobilis (Lindner) (1928), Kluyver e Van Niel (1936. Rev Inst Antibiot (Recife) 1968 Dec;8(1):19–48. [PubMed] [Google Scholar]
  22. van Vliet F., Silva B., van Montagu M., Schell J. Transfer of RP4::mu plasmids to Agrobacterium tumefaciens. Plasmid. 1978 Sep;1(4):446–455. doi: 10.1016/0147-619x(78)90003-3. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES